Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies. Sequential electrochemical polymerizations locally conjugate subwavelength-thin layers of PANI and PEDOT onto preselected gold nanorods, creating electro-plasmonic antennas with distinct optoelectronic properties. This dual-polymer approach enables dynamic metasurface pixel control without individual electrode routing, thereby simplifying active metasurface designs. The metasurfaces exhibit dual-channel functions, including anomalous transmission and holography, through the redox-state switching of both polymers. Our work underscores the potential of conducting polymers for active metasurface applications, offering a pathway to advanced reconfigurable optical devices at visible frequencies.
Metasurfaces have revolutionized optical technologies by offering powerful, compact, and versatile solutions to control light. Conducting polymers, characterized by their conjugated molecular structures, facilitate charge transport and exhibit interesting electrical, optical, and mechanical properties. Integrating conducting polymers with optical metasurfaces can unlock new opportunities and functionalities in modern optics. In this work, we demonstrate an electrochemically programmable metasurface with independently controlled metasurface pixels at optical frequencies. Electrochemical modulation of locally conjugated polyaniline on gold nanorods, which are arranged on addressable electrodes according to the Pancharatnam-Berry phase design, enables dynamic control over the metasurface pixels into programmable configurations. With the same metasurface device, we showcase diverse optical functions, including dynamic beam diffraction and varifocal lensing along and off the optical axis. The synergy between flat optics and conducting polymer science holds immense potential to enhance the performance and function versatility of metasurfaces, paving the way for innovative optical applications.