Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1−xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ∼0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ∼0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that of Mo. The mechanisms suggested herein may be of relevance for explaining phase stability data in a number of metastable alloys, such as ternary transition metal-aluminum-nitride systems.
Hafnium oxynitride films are deposited from a Hf target employing direct current magnetron sputtering in an Ar–O2–N2 atmosphere. It is shown that the presence of N2 allows for the stabilization of the transition zone between the metallic and the compound sputtering mode enabling deposition of films at well defined conditions of target coverage by varying the O2 partial pressure. Plasma analysis reveals that this experimental strategy facilitates control over the flux of the O− ions which are generated on the oxidized target surface and accelerated by the negative target potential toward the growing film. An arrangement that enables film growth without O− ion bombardment is also implemented. Moreover, stabilization of the transition sputtering zone and control of the O− ion flux without N2 addition is achieved employing high power pulsed magnetron sputtering. Structural characterization of the deposited films unambiguously proves that the phase formation of hafnium oxide and hafnium oxynitride films with the crystal structure of HfO2 is independent from the O− bombardment conditions. Experimental and theoretical data indicate that the presence of vacancies and/or the substitution of O by N atoms in the nonmetal sublattice favor the formation of the cubic and/or the tetragonal HfO2 crystal structure at the expense of the monoclinic HfO2 one.
Stress generation in polycrystalline Mo thin films grown using an energetic vapor flux (energies <~120 eV) is investigated. It is found that the film stress ranges from -3 to 0.2 GPa with a near ...
Hydrogenated diamondlike carbon (DLC:H) thin films exhibit many interesting properties that can be tailored by controlling the composition and energy of the vapor fluxes used for their synthesis. This control can be facilitated by high electron density and/or high electron temperature plasmas that allow one to effectively tune the gas and surface chemistry during film growth, as well as the degree of ionization of the film forming species. The authors have recently demonstrated by adding Ne in an Ar-C high power impulse magnetron sputtering (HiPIMS) discharge that electron temperatures can be effectively increased to substantially ionize C species [Aijaz et al., Diamond Relat. Mater. 23, 1 (2012)]. The authors also developed an Ar-C2H2 HiPIMS process in which the high electron densities provided by the HiPIMS operation mode enhance gas phase dissociation reactions enabling control of the plasma and growth chemistry [Aijaz et al., Diamond Relat. Mater. 44, 117 (2014)]. Seeking to further enhance electron temperature and thereby promote electron impact induced interactions, control plasma chemical reaction pathways, and tune the resulting film properties, in this work, the authors synthesize DLC:H thin films by admixing Ne in a HiPIMS based Ar/C2H2 discharge. The authors investigate the plasma properties and discharge characteristics by measuring electron energy distributions as well as by studying discharge current characteristics showing an electron temperature enhancement in C2H2 based discharges and the role of ionic contribution to the film growth. These discharge conditions allow for the growth of thick (>1 μm) DLC:H thin films exhibiting low compressive stresses (∼0.5 GPa), high hardness (∼25 GPa), low H content (∼11%), and density in the order of 2.2 g/cm3. The authors also show that film densification and change of mechanical properties are related to H removal by ion bombardment rather than subplantation.
The authors study the morphological evolution of magnetron-sputtered thin silver (Ag) films that are deposited on weakly interacting silicon dioxide (SiO2) substrates in an oxygen-containing (O2) gas atmosphere. In situ and real-time monitoring of electrically conductive layers, along with ex situ microstructural analyses, shows that the presence of O2, throughout all film-formation stages, leads to a more pronounced two-dimensional (2D) morphology, smoother film surfaces, and larger continuous-layer electrical resistivities, as compared to Ag films grown in pure argon (Ar) ambient. In addition, the authors’ data demonstrate that 2D morphology can be promoted, without compromising the Ag-layer electrical conductivity, if O2 is deployed with high temporal precision to target film formation stages before the formation of a percolated layer. Detailed real-space imaging of discontinuous films, augmented by in situ growth monitoring data, suggests that O2 favors 2D morphology by affecting the kinetics of initial film-formation stages and most notably by decreasing the rate of island coalescence completion. Furthermore, compositional and bonding analyses show that O2 does not change the chemical nature of the Ag layers and no atomic oxygen is detected in the films, i.e., O2 acts as a surfactant. The overall results of this study are relevant for developing noninvasive surfactant-based strategies for manipulating noble-metal-layer growth on technologically relevant weakly interacting substrates, including graphene and other 2D crystals.
The effect of the high pulse current and the duty cycle on the deposition rate in high power pulsed magnetron sputtering (HPPMS) is investigated. Using a Cr target and the same average target current, deposition rates are compared to dc magnetron sputtering (dcMS) rates. It is found that for a peak target current density ITpd of up to 570mAcm−2, HPPMS and dcMS deposition rates are equal. For ITpd>570mAcm−2, optical emission spectroscopy shows a pronounced increase of the Cr+∕Cr0 signal ratio. In addition, a loss of deposition rate, which is attributed to self-sputtering, is observed.