Abstract This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low‐lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi‐model ensemble combined with seasonal/inter‐annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind‐waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.
As many other regions worldwide, the Bolivian Altiplano has to cope with water scarcity during dry periods, which in turn impacts on crop production as flood irrigation is overwhelmingly extended in the region. Since farming is the main income in the Altiplano for most families, the availability of greenhouses with water harvesting systems may represent a solution to warrant all year round production and food access. We study the daily satisfied water demand from a balance between rainfall collected by a greenhouse roof and water used for indoor crop irrigation assuming a tank is available for water storage. This balance is analyzed for 25 greenhouses spread over Batallas Municipality, close to Titicaca Lake, Bolivia, and for two case studies: (i) using irrigation data collected from farmers in the frame of a regional project; (ii) using theoretical daily water requirements assuming an intense greenhouse farming. Our evaluation includes a sensitivity analysis of relevant parameters, such as the influence of the time window of rainfall used in the simulation, the runoff coefficient, the roof surface area, the irrigation drip system, the irrigation frequency, the crop coefficient, the volume of water used for crop irrigation, and the capacity of the water tank. Overall, we find that the runoff coefficient has little impact on the satisfied demand rate, while all other parameters can play an important role depending on the greenhouse considered. Some greenhouses are able to irrigate crops normally during the wet season, while during the dry season, greenhouses are not able to satisfy more than 50% of the theoretical water requirements, even when large tanks are considered. Based on these results, we recommend the construction of greenhouses with a ground surface of <50 m2 attached to the largest available covered water tank. The information here provided can be used by stakeholders to decide their policies of investment in infrastructures in the Altiplano. Finally, the approach we follow can be applied to any other region where rainfall, temperature, and greenhouse data are available.
Abstract. Previous studies have indicated that most of the net sinking associated with the downward branch of the Atlantic Meridional Overturning Circulation (AMOC) must occur near the subpolar North Atlantic boundaries. In this work we have used monthly mean fields of a high-resolution ocean model (0.1 deg at the equator) to quantify this sinking. To this end we have calculated the Eulerian net vertical transport (WΣ) from the modelled vertical velocities, its seasonal variability and its spatial distribution under repeated climatological atmospheric forcing conditions. Based on this simulation, we find that for the whole subpolar North Atlantic WΣ peaks at about −14 Sv at a depth of 1139 m, matching both the mean depth and the magnitude of the meridional transport of the AMOC at 45° N. It displays a seasonal variability of around 10 Sv. Three sinking regimes are identified according to the characteristics of the accumulated W with respect to the distance to the coast: one within the first 110 km and onto the bathymetric slope at around the peak of the boundary current speed (regime I), the second between 110 km and 290 km covering the remainder of the shelf where mesoscale eddies exchange properties (momentum, heat, mass) between the interior and the boundary (regime II), and the third sinking regime at larger distances from the coast where WΣ is mostly driven by the ocean's interior eddies (regime III). Regimes I and II accumulate ∼ 90 % of the total sinking and display smaller seasonal changes and spatial variability than regime III. We find that such a distinction in regimes is also useful to describe the characteristics of WΣ in marginal seas located far from the overflow areas, although the regime boundaries can shift a few tens of km inshore or offshore depending on the bathymetric slope and shelf width of each marginal sea. The largest contributions to the sinking come from the Labrador Sea, the Newfoundland region and the overflow regions. The magnitude, the seasonal variability and the depth at which WΣ peaks vary for each region, thus revealing a complex picture of sinking in the subpolar North Atlantic.
We study the sea surface transport in the Western Mediterranean Sea from a Lagrangian point of view, in particular the Alboran and the North‐Western subbasins. The study is carried out through the analysis of 3 years of surface velocity model data through Finite Size Lyapunov Exponents, Residence Time, and virtual particle trajectories complementing the classical Eulerian approach. The spatiotemporal variability of the main transport processes is inferred from the Empirical Orthogonal Function modes of the Lyapunov Exponents, being the most relevant modes discussed and physically interpreted. Results indicate that some of the variability in the surface transport patterns in the Western Mediterranean can be explained by specific modes which provide an indication of connectivity among subbasins, like the inflow of Atlantic waters through the Ibiza Channel.
Abstract The spatial distribution, and the monthly and seasonal variability of mesoscale eddy observations derived from the AVISO eddy atlas are assessed in the Caribbean Sea during 1993–2019. The average lifetime for the whole set of eddies is 62 ± 37 days, mean amplitude of 7 ± 4 cm for cyclonic and 7 ± 4 cm for anticyclonic and mean radius of 100 ± 31 km for cyclonic and 108 ± 32 km for anticyclonic. Cyclonic eddies are on average more nonlinear than anticyclonic ones. The spatio-temporal variability in the number of eddy observations is evaluated against the Mean Eddy Kinetic Energy (MEKE) derived from geostrophic currents as well as from seasonal winds. Spatial distribution of eddy observations is correlated with MEKE while the migration of the intertropical convergence zone explains the advection of eddies towards the southern part of the basin.
The water cycle of the Baltic Sea has been estimated from the Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On satellite time-variable gravity measurements, and precipitation and evaporation from ERA5 atmospheric reanalysis data for the periods 06/2002 to 06/2017 and 06/2018 to 11/2021. On average, the Baltic Sea evaporates 199 ± 3 km 3 /year, which is overcompensated with 256 ± 6 km 3 /year of precipitation and 476 ± 17 km 3 /year of water from land. This surplus of freshwater inflow produces a salty water net outflow from the Baltic Sea of 515 ± 27 km 3 /year, which increases to 668 ± 32 km 3 /year when the Kattegat and Skagerrak straits are included. In general, the balance among the fluxes is not reached instantaneously, and all of them present seasonal variability. The Baltic net outflow reaches an annual minimum of 221 ± 79 km 3 /year in September and a maximum of 814 ± 94 km 3 /year in May, mainly driven by the freshwater contribution from land. On the interannual scale, the annual mean of the Baltic net outflow can vary up to 470 km 3 /year from year to year. This variability is not directly related to the North Atlantic Oscillation during wintertime, although the latter is well correlated with net precipitation in both continental drainage basins and the Baltic Sea.
Abstract Wave energy flux (WEF) is assessed in the Caribbean Sea from a 60-year (1958--2017) wave hindcast. We use a novel approach, based on neural networks, to identify coherent regions of similar WEF and their association with different climate patterns. This method allows for a better evaluation of the underlying dynamics behind seasonal and inter-annual WEF variability, including the effect induced by the latitudinal migration of the Intertropical Convergence Zone (ITCZ), and the influence of El Ni\~no-Southern Oscillation events. Results show clear regional differences of the WEF variability likely due to both a clear regionalization of the WEF due to both the intensification and migration of the ITCZ. WEF exhibits a strong semiseasonal signal in areas of the continental shelf, with maximums in January and June, in agreement with the sea surface temperature and sea level pressure variability. At larger scales, WEF shows a significant correlation with the Oceanic Ni\~no Index depicting positive values in the central and western basin and negative ones at the eastern side.