A radio-frequency quadrupole (RFQ) focused proton linac has been developed and successfully tested at the Los Alamos Scientific Laboratory (LASL) for the purpose of evaluating its performance and applicability as a low-beta accelerator. The geometry of the structure was designed to accept a 100-keV beam, focus, bunch, and accelerate it to 640 keV in 1.1 m with a high-capture efficiency and minimum emittance growth. The accelerator test facility includes an injector, low-energy transport section for transverse matching, and a high-energy transport section for analysis of the beam properties. The accelerator cavity is exited through a manifold powered by a 425-MHz klystron. Diagnostic instrumentation was prepared to facilitate operation of the accelerator and to analyze its performance. Measurements of the beam properties are presented and compared with the expected properties resulting from numerical calculations of the beam dynamics.
PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, and RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28more » mA. The beam pulse length is 60 ..mu..s at a 60-Hz repetition rate, resulting in a 100-..mu..A average beam current. The total cost of the accelerator is estimated to be approx. $10 million.« less
A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (s = 0.842) H- ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relativistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of our photo-detachment work with H- beams and our spectroscopic work with H0 beams are presented. Our plans for future work are discussed.
A 30-kV proton injector designed for matching a 31-mA proton beam into the radio-frequency quadrupole (RFQ) section of the PIGMI accelerator has been constructed and tested. This injector uses a small efficient duoplasmatron ion source and a single-gap extraction system for creating a convergent ion beam, and a three-element unipotential einzel lens for focusing the ion beam into the RFQ. A description of this prototype injector is presented, along with the experimental data obtained during the testing of this system.
About half of the particle accelerators produced worldwide are used for industrial applications. These commercial systems utilize a wide range of accelerator technologies and cover numerous applications over a broad range of business segments. While this is not a high profile business, these "industrial accelerators" have a significant impact on people's lives and the world's economy, as many products contain parts that have been processed by charged particle beams. Wide scale adoption of many of these processing tools has resulted in the rapid growth of the business of producing and selling them. This paper is a review of the current status of industrial accelerators worldwide, including the technologies, the applications, the vendors and the sizes of the markets.
For many years, LLNL researchers have been developing time‐correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man‐portability. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse‐shape discriminating plastics that respond over 1000 times faster (ns versus tens of μs) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron‐induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of 3He‐based counters measuring correlated pairs in modest (kg) samples of plutonium.
PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, an RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28 mA. The beam pulse length is 60 ps μs at a 60-Hz repetition rate, resulting in a 100-μA average beam current. The total cost of the accelerator is estimated to be ~$10 million.
Since natural coloured sapphire (α‐Al2O3) commands a high gem stone market price there is a need for a reliable method of identifying artificially coloured sapphire that has an inherently lower value. Diffusing beryllium into sapphire at high temperatures results in a coloured stone virtually indistinguishable from a natural one. Beryllium can occur naturally in sapphire but at levels of <1 ppma. Beryllium diffused sapphire typically contains >10 ppma, which is difficult to determine in a non destructive way. It is possible to utilize nuclear reaction analysis techniques to determine the beryllium content in a macroscopically non destructive way. Kinematically ideal reactions are Be(p,α) and Be(p,d) which, for Ep = 0.5 to 0.9 MeV, exhibit distinct reaction product signatures well separated from other proton induced reactions in aluminium or oxygen. Due to the lack of comprehensive cross section data for the Be(p,α) and Be(p,d) reactions in the energy range of interest, a series of measurements were made at the Van de Graaff accelerator facility at Necsa to create a new data base. A further outcome of these measurements was a deviation in reported values for the non‐Rutherfordian proton back‐scatter cross section. These new data bases, which extend to Ep = 2.6MeV, can now facilitate a procedure for determining beryllium content in sapphire.