Angioplasty for cases of chronic total occlusion of renal artery with/without atrophic kidney is generally not recommended. We herein report a 57-year-old man who presented with renin-mediated refractory hypertension caused by occlusion of a unilateral renal artery leading to kidney atrophy (length: 69 mm). Angioplasty favorably achieved blood pressure control with normalized renin secretion and enlargement of the atrophic kidney to 85 mm. Timely angioplasty can be beneficial in select patients, even with an atrophic kidney and total occlusion, especially in cases with deterioration of hypertension within six months and the presence of collateral perfusion to the affected kidney.
The physiological functions of supersulfides, inorganic and organic sulfides with sulfur catenation, have been extensively studied. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulfide synthase. This study aimed to investigate the role of supersulfides in joint homeostasis and bone regeneration. Using Cars2AINK/+ mutant mice, in which the KIIK motif of CARS2 essential for supersulfide production was replaced with AINK, we evaluated the role of supersulfides in fracture healing and cartilage homeostasis during osteoarthritis (OA). Tibial fracture surgery was performed on the wild-type (Cars2+/+) and Cars2AINK/+ mice littermates. Bulk RNA-seq analysis for the osteochondral regeneration in the fracture model showed increased inflammatory markers and reduced osteogenic factors, indicative of impaired bone regeneration, in Cars2AINK/+ mice. Destabilization of the medial meniscus (DMM) surgery was performed to produce the mouse OA model. Histological analyses with Osteoarthritis Research Society International and synovitis scores revealed accelerated OA progression in Cars2AINK/+ mice compared with that in Cars2+/+ mice. To assess the effects of supersulfides on OA progression, glutathione trisulfide (GSSSG) or saline was periodically injected into the mouse knee joints after the DMM surgery. Thus, supersulfides derived from CARS2 and GSSSG exogenously administered significantly inhibited inflammation and lipid peroxidation of the joint cartilage, possibly through suppression of ferroptosis, during OA development. This study represents a significant advancement in understanding anti-inflammatory and anti-oxidant functions of supersulfides in skeletal tissues and may have a clinical relevance for the bone healing and OA therapeutics.
Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.
In light of the recent pandemic, favipiravir (Avigan®), a purine nucleic acid analog and antiviral agent approved for use in influenza in Japan, is being studied for the treatment of coronavirus disease 2019 (COVID-19). Increase in blood uric acid level is a frequent side effect of favipiravir. Here, we discussed the mechanism of blood uric acid elevation during favipiravir treatment. Favipiravir is metabolized to an inactive metabolite M1 by aldehyde oxidase and xanthine oxidase, and excreted into urine. In the kidney, uric acid handling is regulated by the balance of reabsorption and tubular secretion in the proximal tubules. Favipiravir and M1 act as moderate inhibitors of organic anion transporter 1 and 3 (OAT1 and OAT3), which are involved in uric acid excretion in the kidney. In addition, M1 enhances uric acid reuptake via urate transporter 1 (URAT1) in the renal proximal tubules. Thus, favipiravir is thought to decrease uric acid excretion into urine, resulting in elevation of uric acid levels in blood. Elevated uric acid levels were returned to normal after discontinuation of favipiravir, and favipiravir is not used for long periods of time for the treatment of viral infection. Thus, the effect on blood uric acid levels was subclinical in most studies. Nevertheless, the adverse effect of favipiravir might be clinically important in patients with a history of gout, hyperuricemia, kidney function impairment (in which blood concentration of M1 increases), and where there is concomitant use of other drugs affecting blood uric acid elevation.
Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model "Mitomouse" (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial.
Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease, including end-stage kidney disease, and increases the risk of cardiovascular mortality. Although the treatment options for DKD, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, sodium-glucose cotransporter 2 inhibitors, and mineralocorticoid receptor antagonists, have advanced, their efficacy is still limited. Thus, a deeper understanding of the molecular mechanisms of DKD onset and progression is necessary for the development of new and innovative treatments for DKD. The complex pathogenesis of DKD includes various different pathways, and the mechanisms of DKD can be broadly classified into inflammatory, fibrotic, metabolic, and hemodynamic factors. Here, we summarize the recent findings in basic research, focusing on each factor and recent advances in the treatment of DKD. Collective evidence from basic and clinical research studies is helpful for understanding the definitive mechanisms of DKD and their regulatory systems. Further comprehensive exploration is warranted to advance our knowledge of the pathogenesis of DKD and establish novel treatments and preventive strategies.
Abstract Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.
The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.