Cardiac resynchronization therapy (CRT) for heart failure is targeted at specific patients with mechanical dyssynchrony. We aimed to evaluate the prevalence of dyssynchrony in heart failure patients with either normal or prolonged QRS duration using Doppler imaging. Sixty heart failure patients with idiopathic dilated cardiomyopathy (30 with prolonged QRS duration 30 with normal QRS duration) underwent standard echocardiography and tissue Doppler imaging examinations. Difference between left and right ventricular pre‐ejection intervals of more than 40 msec was considered a marker of interventricular dyssynchrony. Intraventricular dyssynchrony was defined as a delay of 60 msec between the time to peak velocities of the septum and left ventricular lateral wall. Patients who have either intra‐ or interventricular dyssynchrony were defined as with cardiac dyssynchrony. Dyssynchrony was observed in 7 (23.3 % ) heart failure patients with normal QRS duration versus 26 (86.7 % ) patients with prolonged QRS duration. There was significant difference between the prevalence of dyssynchrony derived from echo criteria in two groups (P < 0.05). Although patients with prolonged QRS duration have a high prevalence of dyssynchrony, yet some still have good cardiac synchronicity. Moreover, dyssynchrony also exists in a small percentage of heart failure patients with normal QRS duration. To identify the potential responders for CRT, both QRS duration and cardiac synchronicity should be assessed.
Protein subunit vaccines, lacking pathogen-associated molecular patterns that trigger immune responses, rely on adjuvants to induce robust immune responses against the target pathogen. Thus, selection of adjuvants plays a crucial role in the design of protein subunit vaccines. Recently, there has been growing interest in utilizing cGAS-STING agonists as vaccine adjuvants. In this study, we investigated the adjuvant effect of manganese (Mn), a cGAS-STING agonist, on the tuberculosis subunit vaccine Bfrb-GrpE (BG) in a mouse model. Initially, mice were administered with BG-Mn(J), and its immunogenicity and protective efficacy were assessed six weeks after the final immunization. The results showed that Mn(J) enhanced both the cellular and humoral immune responses to the BG vaccine and conferred effective protection against M. tuberculosis H37Ra infection in mice, leading to a significant reduction of 2.0 ± 0.17 Log10 CFU in spleens and 1.3 ± 0.17 Log10 CFU in lungs compared to the PBS control group. Additionally, we assessed the BG-Mn(J) vaccine in a surrogate model of tuberculosis in rabbit skin model. The vaccination with BG-Mn(J) also provided effective protection in the rabbit model, as indicated by a decreased bacterial load at the infection site, minimal pathological damage, and accelerated healing. These findings suggest that Mn(J) holds promise as an adjuvant for tuberculosis vaccines, underscoring its potential to enhance vaccine efficacy and offer protection against tuberculosis infection.
The case-based teaching was inserted in the lecture-based teaching in clinical microbiology. The teachers conducted the case-based teaching through proper selection of cases, leading students to discuss and analyze cases. The students explored and reported from the cases independently. Finally, the teachers summarized and evaluated from the case-based teaching. The combination of case-based teaching and lecture-based study stimulated the students' interest in learning and motivation, consolidated their theoretical knowledge, cultivated their abilities of self-learning and clinical idea, and made the correlation between the theory and the clinical practice closely. These methods improved the teaching quality of clinical microbiology.
Key words:
Case-based teaching; Clinical microbiology examination; Medical microbiology
Pyrazinamide (PZA) is a unique frontline drug for shortening tuberculosis (TB) treatment, but its mechanisms of action are elusive. We previously found one PZA-resistant strain that harbors an alanine deletion at position 438 (Δ438A) in RpsA, a target of PZA associated with PZA resistance, but its role in causing PZA resistance has been inconclusive. Here, we introduced the RpsA Δ438A mutation along with the D123A mutation into the
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is among the most serious infectious diseases worldwide. Adjuvanted protein subunit vaccines have been demonstrated as a kind of promising novel vaccine. This study proposed to investigate whether cytokines interliukine-7 (IL-7) and interliukine-15 (IL-15) help TB subunit vaccines induce long-term cell-mediated immune responses, which are required for vaccination against TB. In this study, mice were immunized with the M. tuberculosis protein subunit vaccines combined with adnovirus-mediated cytokines IL-7, IL-15, IL-7-IL-15, and IL-7-Linker-IL-15 at 0, 2, and 4 weeks, respectively. Twenty weeks after the last immunization, the long-term immune responses, especially the central memory-like T cells (TCM like cell)-mediated immune responses, were determined with the methods of cultured IFN-γ-ELISPOT, expanded secondary immune responses, cell proliferation, and protective efficacy against Mycobacterium bovis Bacilli Calmette-Guerin (BCG) challenge, etc. The results showed that the group of vaccine + rAd-IL-7-Linker-IL-15 induced a stronger long-term antigen-specific TCM like cells-mediated immune responses and had higher protective efficacy against BCG challenge than the vaccine + rAd-vector control group, the vaccine + rAd-IL-7 and the vaccine + rAd-IL-15 groups. This study indicated that rAd-IL-7-Linker-IL-15 improved the TB subunit vaccine's efficacy by augmenting TCM like cells and provided long-term protective efficacy against Mycobacteria.
Tuberculosis (TB) is a chronic disease mainly caused by Mycobacterium tuberculosis. The function of T cells usually decreased and even exhausted in severe TB such as multiple drug resistant TB (MDR-TB), which might lead to the failure of treatment in return. The mechanism of T cell dysfunction in TB is still not clear. In this study we set up a mouse model of T cell dysfunction by persistent M. tuberculosis antigen stimulation and investigated the therapeutic role of interleukin 2 (IL-2) in it. C57BL/6 mice were primed with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and boosted repeatedly with a combination of M. tuberculosis fusion proteins Mtb10.4-HspX (MH) plus ESAT6-Ag85B-MPT64 <190-198>-Mtb8.4-Rv2626c (LT70) or MH plus ESAT6 and CFP10 with adjuvant of N, N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA) plus polyinosinic-polycytidylic acid (Poly I:C). Following persistent antigen stimulation, the mice were treated with IL-2 and the therapeutic effects were analyzed. The results showed that compared with the mice that received transient antigen stimulation (boost twice), persistent antigen stimulation (boost more than 10 times) resulted in decrease of antigen specific IFN-γ and IL-2 production, reduction of memory CD8+ T cells, over-expression of immune checkpoint programmed cell death protein 1 (PD-1), and impaired the protective immunity against bacterial challenge. Treating the T cell functionally exhausted mice with IL-2 restored antigen-specific T cell responses and protective efficacy. In conclusion, persistent stimulation with M. tuberculosis antigens induced T cell dysfunction, which could be restored by complement of IL-2.