Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+ -coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find that CbSITL from Coccolithus braarudii is transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement of C. braarudii and other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.
The species concept in marine phytoplankton is defined based on genomic, morphological, and functional properties. Reports of intraspecific diversity are widespread across major phytoplankton groups but the impacts of this variation on ecological and biogeochemical processes are often overlooked. Intraspecific diversity is well known within coccolithophores, which play an important role in the marine carbon cycle via production of particulate inorganic carbon. In this study, we investigated strain-specific responses to temperature in terms of morphology, carbon production, and carbonate mineralogy using a combination of microscopy, elemental analysis, flow cytometry, and nuclear magnetic resonance. Two strains of the cosmopolitan coccolithophore E. huxleyi isolated from different regions (subtropical, CCMP371; temperate, CCMP3266) were cultured under a range of temperature conditions (10°C, 15°C, and 20°C) using batch cultures and sampled during both exponential and stationary growth. Results for both strains showed that growth rates decreased at lower temperatures while coccosphere size increased. Between 15°C and 20°C, both strains produced similar amounts of total carbon, but differed in allocation of that carbon between particulate inorganic carbon (PIC) and particulate organic carbon (POC), though temperature effects were not detected. Between 10°C and 20°C, temperature effects on daily production of PIC and POC, as well as the cellular quota of POC were detected in CCMP3266. Strain-specific differences in coccolith shedding rates were found during exponential growth. In addition, daily shedding rates were negatively related to temperature in CCMP371 but not in CCMP3266. Despite differences in rates of particulate inorganic carbon production, both strains were found to produce coccoliths composed entirely of pure calcite, as established by solid-state 13C and 43Ca NMR and X-ray diffraction measurements. These results highlight the limitations of the species concept and the need for a trait-based system to better quantify diversity within marine phytoplankton communities.
Ocean acidification (OA) is expected to have a major impact on marine species, particularly during early life-history stages. These effects appear to be species-specific and may include reduced survival, altered morphology, and depressed metabolism. However, less information is available regarding the bioenergetics of development under elevated CO2 conditions. We examined the biochemical and morphological responses of Strongylocentrotus purpuratus during early development under ecologically relevant levels of pCO2 (365, 1030, and 1450 μatm) that may occur during intense upwelling events. The principal findings of this study were (1) lipid utilization rates and protein content in S. purpuratus did not vary with pCO2; (2) larval growth was reduced at elevated pCO2 despite similar rates of energy utilization; and (3) relationships between egg phospholipid content and larval length were found under control but not high pCO2 conditions. These results suggest that this species may either prioritize endogenous energy toward development and physiological function at the expense of growth, or that reduced larval length may be strictly due to higher costs of growth under OA conditions. This study highlights the need to further expand our knowledge of the physiological mechanisms involved in OA response in order to better understand how present populations may respond to global environmental change.
Reservoirs are a significant source of atmospheric carbon (C), but their emission rates vary in space and time. Here, we compared C emissions via diffusion, ebullition, and degassing pathways for six large hydropower reservoirs in the southeastern US that were previously sampled in summer 2012. We revisited the same stations and used a similar methodology to assess which emissions pathways were dominant during the two times. While recent models have suggested that degassing could be a dominant pathway, in these reservoirs, the contribution of degassing to total emissions was low, typically < 5%. Instead, we found that CO2 diffusion was the dominant emissions pathway in 2022. All six reservoirs were CO2 sources in the summer of 2012, but sinks in the summer of 2022. Next, we explored drivers of spatial variation and found relationships associating indicators of greater algal production with lower CO2 but higher CH4 emissions. Finally, to explore drivers of temporal variability, we sampled one reservoir during three drawdown phases (full summer pool, mid-drawdown, and winter pool). Temporal variation in CO2 diffusion rates paired with seasonal productivity patterns, and we found that lower water levels associated with lower hydrostatic pressure and reduced distance for oxidation resulted in the highest CH4 emissions rates. Our results demonstrate that important regional differences are not yet reflected in efforts to produce C emissions estimates for reservoirs globally. Measuring C emissions from multiple pathways and understanding their spatial and temporal responses and variability is vital to reducing uncertainties in global upscaling efforts.
Abstract Reservoirs are a significant source of carbon (C) to the atmosphere, but their emission rates vary in space and time. We compared C emissions via diffusive and ebullitive pathways at several stations in six large hydropower reservoirs in the southeastern US that were previously sampled in summer 2012. We found that carbon dioxide (CO 2 ) diffusion was the dominant flux pathway during 2012 and 2022, with only three exceptions where methane (CH 4 ) diffusion or CH 4 ebullition dominated. CH 4 diffusion rates were positively associated with water temperature. However, we found no clear predictors of CH 4 ebullition, which had extremely high variability, with rates ranging from 0 to 739 mg C m −2 day −1 . For CO 2 diffusion, the direction of the flux shifted between 2012 and 2022, where all but three stations across all reservoirs emitted CO 2 in summer 2012, but every station sequestered CO 2 in summer 2022. Here, indicators of greater algal production were associated with CO 2 sequestration, including surface chlorophyll‐ a concentration, surface dissolved oxygen saturation, and pH. Additional sampling campaigns outside the summer season highlighted the importance of seasonal phenology in primary production on the direction of CO 2 diffusive fluxes, which shifted to positive CO 2 fluxes by the end of August as productivity decreased. Our results demonstrate the importance of capturing CO 2 sequestration in field and modeling measurements and understanding the seasonal drivers of these estimates. Measuring C emissions from multiple pathways in reservoirs and understanding their spatiotemporal responses and variability are vital to reducing uncertainties in global upscaling efforts.
Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.