The Ca2+ sensor STIM1 and the Ca2+ channel Orai1 that form the store-operated Ca2+ (SOC) channel complex are key targets for drug development. Selective SOC inhibitors are currently undergoing clinical evaluation for the treatment of auto-immune and inflammatory responses and are also deemed promising anti-neoplastic agents since SOC channels are linked with enhanced cancer cell progression. Here, we describe an investigation of the site of binding of the selective inhibitor Synta66 to the SOC channel Orai1 using docking and molecular dynamics simulations, and live cell recordings. Synta66 binding was localized to the extracellular site close to the transmembrane (TM)1 and TM3 helices and the extracellular loop segments, which, importantly, are adjacent to the Orai1-selectivity filter. Synta66-sensitivity of the Orai1 pore was, in fact, diminished by both Orai1 mutations affecting Ca2+ selectivity and permeation of Na+ in the absence of Ca2+. Synta66 also efficiently blocked SOC in three glioblastoma cell lines but failed to interfere with cell viability, division and migration. These experiments provide new structural and functional insights into selective drug inhibition of the Orai1 Ca2+ channel by a high-affinity pore blocker.
Abstract The initial activation step in gating of ubiquitously expressed Orai1 Calcium (Ca 2+ ) ion channels represents the store-dependent coupling to the Ca 2+ sensor protein STIM1. An array of constitutively active Orai1 mutants gave rise to the hypothesis that STIM1 mediated Orai1 pore opening is accompanied by a global conformational change of all Orai TM helices within the channel complex. Here, we prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that a global, opening-permissive allosteric communication of TM helices is indispensable for pore opening and requires clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function (LoF) with one gain-of-function (GoF) point mutation in a series of possible combinations. We demonstrated that an array of LoF mutations act dominant over most GoF mutations within the same as well as of an adjacent Orai subunit. We further established inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints is required to allow STIM1 coupling and Orai1 pore opening. Graphical Abstract
Abstract The activation of the Ca 2+ -channel Orai1 via the physiological activator stromal interaction molecule 1 (STIM1) requires structural rearrangements within the entire channel complex involving a series of gating checkpoints. Focusing on the gating mechanism operating along the peripheral transmembrane domain (TM) 3/TM4-interface, we report here that some charged substitutions close to the center of TM3 or TM4 lead to constitutively active Orai1 variants triggering nuclear factor of activated T-cell (NFAT) translocation into the nucleus. Molecular dynamics simulations unveil that this gain-of-function correlates with enhanced hydration at peripheral TM-interfaces, leading to increased local structural flexibility of the channel periphery and global conformational changes permitting pore opening. Our findings indicate that efficient dehydration of the peripheral TM-interfaces driven by the hydrophobic effect is critical for maintaining the closed state of Orai1. We conclude that a charge close to the center of TM3 or TM4 facilitates concomitant hydration and widening of peripheral TM interfaces to trigger constitutive Orai1 pore opening to a level comparable to or exceeding that of native activated Orai1.
Abstract The family of stromal interaction molecules (STIM) includes two widely expressed single‐pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER‐luminal Ca 2+ sensors. STIM proteins mainly function as one of the two essential components of the so‐called Ca 2+ release‐activated Ca 2+ (CRAC) channel. The second CRAC channel component is constituted by pore‐forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca 2+ store. Using their Ca 2+ sensing capabilities, STIM proteins confer this Ca 2+ content‐dependent signal to Orai, thereby linking Ca 2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease. image
Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.
The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca 2+ concentration and directly binds to the store-operated Ca 2+ channel Orai1 for its activation when Ca 2+ recedes. At high resting ER-Ca 2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca 2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca 2+ entry via Orai1, decreasing the Ca 2+ oscillation frequency as well as store-operated Ca 2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.