Abstract In this work, we design, analyze, and test the multiwavelets Galerkin method to solve the two‐dimensional Burgers equation. Using Crank–Nicolson scheme, time is discretized and a PDE is obtained for each time step. We use the multiwavelets Galerkin method for solving these PDEs. Multiwavelets Galerkin method reduces these PDEs to sparse systems of algebraic equations. The cost of this method is proportional to the number of nonzero coefficients at each time step. The results illustrate, by selecting the appropriate threshold while the number of nonzero coefficients reduces, the error will not be less than a certain amount. The L 2 stability and convergence of the scheme have been investigated by the energy method. Illustrative examples are provided to verify the efficiency and applicability of the proposed method.
Enhancing the heat transfer rate using nanofluids is of great interest to engineers and scientists. This research aims to study the heat and mass transfer analysis of three‐dimensional squeezing carbon nanotube‐ (CNT‐) based nanofluid flow inside a rotating stretching channel. The upper wall of the channel is assumed to have a reciprocating movement, and the lower wall is assumed to be stationary and permeable. Also, radiative effects are taken into account using the Taylor series approximation. The momentum and energy equations are transformed into a coupled system of nonlinear ordinary differential equations utilizing similarity solutions. A new multiscale and accurate method was developed to solve the achieved nonlinear systems of equations. Water is chosen as the base fluid; single‐wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) are added to it, and then two types of nanofluids were created. The effect of different variables such as the concentration of nanotubes, nanotube’s type, suction parameter, rotation parameter, squeezing number, Eckert number, and radiation parameter on the velocity and temperature profiles is investigated. Our results reveal that the temperature profile is an increasing function of the squeezing number, suction, rotation, and radiation parameters when the upper wall moves towards the lower one.
Abstract This work deals with the pseudospectral method to solve the Sturm-Liouville eigenvalue problems with Caputo fractional derivative using Chebyshev cardinal functions. The method is based on reducing the problem to a weakly singular Volterra integrodifferential equation. Then, using the matrices obtained from the representation of the fractional integration operator and derivative operator based on Chebyshev cardinal functions, the equation becomes an algebraic system. To get the eigenvalues, we find the roots of the characteristics polynomial of the coefficients matrix. We have proved the convergence of the proposed method. To illustrate the ability and accuracy of the method, some numerical examples are presented.