Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
State-of-the-art methods for self-supervised learning (SSL) build representations by maximizing the similarity between different transformed of a sample. Without sufficient diversity in the transformations used to create views, however, it can be difficult to overcome nuisance variables in the data and build rich representations. This motivates the use of the dataset itself to find similar, yet distinct, samples to serve as views for one another. In this paper, we introduce Mine Your Own vieW (MYOW), a new approach for self-supervised learning that looks within the dataset to define diverse targets for prediction. The idea behind our approach is to actively mine views, finding samples that are neighbors in the representation space of the network, and then predict, from one sample's latent representation, the representation of a nearby sample. After showing the promise of MYOW on benchmarks used in computer vision, we highlight the power of this idea in a novel application in neuroscience where SSL has yet to be applied. When tested on multi-unit neural recordings, we find that MYOW outperforms other self-supervised approaches in all examples (in some cases by more than 10%), and often surpasses the supervised baseline. With MYOW, we show that it is possible to harness the diversity of the data to build rich views and leverage self-supervision in new domains where augmentations are limited or unknown.
Abstract Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE . Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked tso behavior.
Complex time-varying systems are often studied by abstracting away from the dynamics of individual components to build a model of the population-level dynamics from the start. However, when building a population-level description, it can be easy to lose sight of each individual and how they contribute to the larger picture. In this paper, we present a novel transformer architecture for learning from time-varying data that builds descriptions of both the individual as well as the collective population dynamics. Rather than combining all of our data into our model at the onset, we develop a separable architecture that operates on individual time-series first before passing them forward; this induces a permutation-invariance property and can be used to transfer across systems of different size and order. After demonstrating that our model can be applied to successfully recover complex interactions and dynamics in many-body systems, we apply our approach to populations of neurons in the nervous system. On neural activity datasets, we show that our model not only yields robust decoding performance, but also provides impressive performance in transfer across recordings of different animals without any neuron-level correspondence. By enabling flexible pre-training that can be transferred to neural recordings of different size and order, our work provides a first step towards creating a foundation model for neural decoding.
Brains learn robustly, and generalize effortlessly between different learning tasks; in contrast, robustness and generalization across tasks are well known weaknesses of artificial neural nets (ANNs). How can we use our accelerating understanding of the brain to improve these and other aspects of ANNs? Here we hypothesize that (a) Brains employ synaptic plasticity rules that serve as proxies for GD; (b) These rules themselves can be learned by GD on the rule parameters; and (c) This process may be a missing ingredient for the development of ANNs that generalize well and are robust to adversarial perturbations. We provide both empirical and theoretical evidence for this hypothesis. In our experiments, plasticity rules for the synaptic weights of recurrent neural nets (RNNs) are learned through GD and are found to perform reasonably well (with no backpropagation). We find that plasticity rules learned by this process generalize from one type of data/classifier to others (e.g., rules learned on synthetic data work well on MNIST/Fashion MNIST) and converge with fewer updates. Moreover, the classifiers learned using plasticity rules exhibit surprising levels of tolerance to adversarial perturbations. In the special case of the last layer of a classification network, we show analytically that GD on the plasticity rule recovers (and improves upon) the perceptron algorithm and the multiplicative weights method. Finally, we argue that applying GD to learning rules is biologically plausible, in the sense that it can be learned over evolutionary time: we describe a genetic setting where natural selection of a numerical parameter over a sequence of generations provably simulates a simple variant of GD.
In many machine learning applications, it is necessary to meaningfully aggregate, through alignment, different but related datasets. Optimal transport (OT)-based approaches pose alignment as a divergence minimization problem: the aim is to transform a source dataset to match a target dataset using the Wasserstein distance as a divergence measure. We introduce a hierarchical formulation of OT which leverages clustered structure in data to improve alignment in noisy, ambiguous, or multimodal settings. To solve this numerically, we propose a distributed ADMM algorithm that also exploits the Sinkhorn distance, thus it has an efficient computational complexity that scales quadratically with the size of the largest cluster. When the transformation between two datasets is unitary, we provide performance guarantees that describe when and how well aligned cluster correspondences can be recovered with our formulation, as well as provide worst-case dataset geometry for such a strategy. We apply this method to synthetic datasets that model data as mixtures of low-rank Gaussians and study the impact that different geometric properties of the data have on alignment. Next, we applied our approach to a neural decoding application where the goal is to predict movement directions and instantaneous velocities from populations of neurons in the macaque primary motor cortex. Our results demonstrate that when clustered structure exists in datasets, and is consistent across trials or time points, a hierarchical alignment strategy that leverages such structure can provide significant improvements in cross-domain alignment.
An assembly is a large population of neurons whose synchronous firing is hypothesized to represent a memory, concept, word, and other cognitive categories. Assemblies are believed to provide a bridge between high-level cognitive phenomena and low-level neural activity. Recently, a computational system called the Assembly Calculus (AC), with a repertoire of biologically plausible operations on assemblies, has been shown capable of simulating arbitrary space-bounded computation, but also of simulating complex cognitive phenomena such as language, reasoning, and planning. However, the mechanism whereby assemblies can mediate learning has not been known. Here we present such a mechanism, and prove rigorously that, for simple classification problems defined on distributions of labeled assemblies, a new assembly representing each class can be reliably formed in response to a few stimuli from the class; this assembly is henceforth reliably recalled in response to new stimuli from the same class. Furthermore, such class assemblies will be distinguishable as long as the respective classes are reasonably separated -- for example, when they are clusters of similar assemblies. To prove these results, we draw on random graph theory with dynamic edge weights to estimate sequences of activated vertices, yielding strong generalizations of previous calculations and theorems in this field over the past five years. These theorems are backed up by experiments demonstrating the successful formation of assemblies which represent concept classes on synthetic data drawn from such distributions, and also on MNIST, which lends itself to classification through one assembly per digit. Seen as a learning algorithm, this mechanism is entirely online, generalizes from very few samples, and requires only mild supervision -- all key attributes of learning in a model of the brain.
State-of-the-art methods for self-supervised learning (SSL) build representations by maximizing the similarity between different transformed "views" of a sample. Without sufficient diversity in the transformations used to create views, however, it can be difficult to overcome nuisance variables in the data and build rich representations. This motivates the use of the dataset itself to find similar, yet distinct, samples to serve as views for one another. In this paper, we introduce Mine Your Own vieW (MYOW), a new approach for self-supervised learning that looks within the dataset to define diverse targets for prediction. The idea behind our approach is to actively mine views, finding samples that are neighbors in the representation space of the network, and then predict, from one sample's latent representation, the representation of a nearby sample. After showing the promise of MYOW on benchmarks used in computer vision, we highlight the power of this idea in a novel application in neuroscience where SSL has yet to be applied. When tested on multi-unit neural recordings, we find that MYOW outperforms other self-supervised approaches in all examples (in some cases by more than 10%), and often surpasses the supervised baseline. With MYOW, we show that it is possible to harness the diversity of the data to build rich views and leverage self-supervision in new domains where augmentations are limited or unknown.
How intelligence arises from the brain is a central problem in science. A crucial aspect of intelligence is dealing with uncertainty -- developing good predictions about one's environment, and converting these predictions into decisions. The brain itself seems to be noisy at many levels, from chemical processes which drive development and neuronal activity to trial variability of responses to stimuli. One hypothesis is that the noise inherent to the brain's mechanisms is used to sample from a model of the world and generate predictions. To test this hypothesis, we study the emergence of statistical learning in NEMO, a biologically plausible computational model of the brain based on stylized neurons and synapses, plasticity, and inhibition, and giving rise to assemblies -- a group of neurons whose coordinated firing is tantamount to recalling a location, concept, memory, or other primitive item of cognition. We show in theory and simulation that connections between assemblies record statistics, and ambient noise can be harnessed to make probabilistic choices between assemblies. This allows NEMO to create internal models such as Markov chains entirely from the presentation of sequences of stimuli. Our results provide a foundation for biologically plausible probabilistic computation, and add theoretical support to the hypothesis that noise is a useful component of the brain's mechanism for cognition.
Complex time-varying systems are often studied by abstracting away from the dynamics of individual components to build a model of the population-level dynamics from the start. However, when building a population-level description, it can be easy to lose sight of each individual and how they contribute to the larger picture. In this paper, we present a novel transformer architecture for learning from time-varying data that builds descriptions of both the individual as well as the collective population dynamics. Rather than combining all of our data into our model at the onset, we develop a separable architecture that operates on individual time-series first before passing them forward; this induces a permutation-invariance property and can be used to transfer across systems of different size and order. After demonstrating that our model can be applied to successfully recover complex interactions and dynamics in many-body systems, we apply our approach to populations of neurons in the nervous system. On neural activity datasets, we show that our model not only yields robust decoding performance, but also provides impressive performance in transfer across recordings of different animals without any neuron-level correspondence. By enabling flexible pre-training that can be transferred to neural recordings of different size and order, our work provides a first step towards creating a foundation model for neural decoding.