Abstract Background Understanding typically developing infant brain structure is crucial in investigating neurological disorders of early childhood. Brain atlases providing standardised identification of neonatal brain regions are key in such investigations. Our previously developed Melbourne Children’s Regional Infant Brain (M-CRIB) and M-CRIB 2.0 neonatal brain atlases provide standardised parcellation of 100 and 94 brain regions respectively, including cortical, subcortical, and cerebellar regions. The aim of this study was to extend the M-CRIB atlas coverage to include 54 white matter regions. Methods Participants were ten healthy term-born neonates who comprised the sample for the M-CRIB and M-CRIB 2.0 atlases. WM regions were manually segmented on T 2 images and co-registered diffusion tensor imaging-based, direction-encoded colour maps. Our labelled regions are based on those in the JHU-neonate-SS atlas, but differ in the following ways: 1) we included five corpus callosum subdivisions instead of a left / right division; 2) we included a left / right division for the middle cerebellar peduncle; and 3) we excluded the three brainstem divisions. All segmentations were reviewed and approved by a paediatric radiologist and a neurosurgery research fellow for anatomical accuracy. Results The resulting neonatal WM atlas comprises 54 WM regions: 24 paired regions, and six unpaired regions comprising five corpus callosum subdivisions and one pontine crossing tract. Detailed protocols for manual WM parcellations are provided, and the M-CRIB-WM atlas is presented together with the existing M-CRIB and M-CRIB 2.0 cortical, subcortical and cerebellar parcellations in ten individual neonatal MRI datasets. Conclusion The updated M-CRIB atlas including the WM parcellations will be made publicly available. The atlas will be a valuable tool that will help facilitate neuroimaging research into neonatal WM development in both healthy and diseased states.
Abstract Brain atlases providing standardised identification of neonatal brain regions are key in investigating neurological disorders of early childhood. Our previously developed Melbourne Children's Regional Infant Brain (M‐CRIB) and M‐CRIB 2.0 neonatal brain atlases provide standardised parcellation of 100 brain regions including cortical, subcortical, and cerebellar regions. The aim of this study was to extend M‐CRIB atlas coverage to include 54 white matter (WM) regions. Participants were 10 healthy term‐born neonates that were used to create the initial M‐CRIB atlas. WM regions were manually segmented based on T 2 images and co‐registered diffusion tensor imaging‐based, direction‐encoded colour maps. Our labelled regions imitate the Johns Hopkins University neonatal atlas, with minor anatomical modifications. All segmentations were reviewed and approved by a paediatric radiologist and a neurosurgery research fellow for anatomical accuracy. The resulting neonatal WM atlas comprises 54 WM regions: 24 paired regions, and six unpaired regions comprising five corpus callosum subdivisions, and one pontine crossing tract. Detailed protocols for manual WM parcellations are provided, and the M‐CRIB‐WM atlas is presented together with the existing M‐CRIB cortical, subcortical, and cerebellar parcellations in 10 individual neonatal MRI data sets. The novel M‐CRIB‐WM atlas, along with the M‐CRIB cortical and subcortical atlases, provide neonatal whole brain MRI coverage in the first multi‐subject manually parcellated neonatal atlas compatible with atlases commonly used at older time points. The M‐CRIB‐WM atlas is publicly available, providing a valuable tool that will help facilitate neuroimaging research into neonatal brain development in both healthy and diseased states.
Optic radiation (OR) tractography may help predict and reduce post-neurosurgical visual field deficits. OR tractography methods currently lack pediatric and surgical focus.We propose a clinically feasible OR tractography strategy in a pediatric neurosurgery setting and examine its intra-rater and inter-rater reliability/agreements.Preoperative and intraoperative MRI data were obtained from six epilepsy and two brain tumor patients on 3 Tesla MRI scanners. Four raters with different clinical experience followed the proposed strategy to perform probabilistic OR tractography with manually drawing anatomical landmarks to reconstruct the OR pathway, based on fiber orientation distributions estimated from high angular resolution diffusion imaging data. Intra- and inter-rater reliabilities/agreements of tractography results were assessed using intraclass correlation coefficient (ICC) and dice similarity coefficient (DSC) across various tractography and OR morphological metrics, including the lateral geniculate body positions, tract volumes, and Meyer's loop position from temporal anatomical landmarks.Good to excellent intra- and inter-rater reproducibility was demonstrated for the majority of OR reconstructions (ICC = 0.70-0.99; DSC = 0.84-0.89). ICC was higher for non-lesional (0.82-0.99) than lesional OR (0.70-0.99). The non-lesional OR's mean volume was 22.66 cm3; the mean Meyer's loop position was 29.4 mm from the temporal pole, 5.89 mm behind of and 10.26 mm in front of the temporal ventricular horn. The greatest variations (± 1.00-3.00 mm) were observed near pathology, at the tract edges or at cortical endpoints. The OR tractography were used to assist surgical planning and guide lesion resection in all cases, no patient had new visual field deficits postoperatively.The proposed tractography strategy generates reliable and reproducible OR tractography images that can be reliably implemented in the routine, non-emergency pediatric neurosurgical setting.