A mussel-inspired interlayer of polydopamine (PDA)/polyethylenimine (PEI) is codeposited on the ultrafiltration substrate to tune the interfacial polymerization of piperazine and trimesoyl chloride for the preparation of thin-film composite (TFC) nanofiltration membranes (NFMs). This hydrophilic interlayer results in an efficient adsorption of piperazine solution in the substrate pores. The solution height increases with the PDA/PEI codeposition time from 45 to 135 min due to the capillary effect of the substrate pores. The prepared TFC NFMs are characterized with thin and smooth polyamide selective layers by ATR/IR, XPS, FESEM, AFM, zeta potential, and water contact angle measurements. Their water permeation flux measured in a cross-flow process increases to two times as compared with those TFC NFMs without the mussel-inspired interlayer. These TFC NFMs also show a high rejection of 97% to Na2SO4 and an salt rejection order of Na2SO4 ≈ MgSO4 > MgCl2 > NaCl.
Abstract Engineering coatings with precise physicochemical properties allows for control over the interface of a material and its interactions with the surrounding environment. However, assembling coatings with well‐defined properties on different material classes remains a challenge. Herein, we report a co‐assembly strategy to precisely control the structure and properties (e.g., thickness, adhesion, wettability, and zeta potential) of coatings on various materials (27 substrates examined) using quinone and polyamine building blocks. By increasing the length of the amine building blocks from small molecule diamines to branched amine polymers, we tune the properties of the films, including the thickness (from ca. 5 to ca. 50 nm), interfacial adhesion (0.05 to 5.54 nN), water contact angle (130 to 40°), and zeta potential (−42 to 28 mV). The films can be post‐functionalized through the in situ formation of diverse nanostructures, including nanoparticles, nanorods, and nanocrystals. Our approach provides a platform for the rational design of engineered, substrate‐independent coatings for various applications.
Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of β-FeOOH nanorods. The PDA–PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the β-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the β-FeOOH layer exhibits efficient photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.
Abstract Micro/nanostructured surfaces with designable wettability show great promise in many fields. This paper reports a new strategy for fabricating superhydrophobic surfaces with tunable water adhesion force by combining multiscale surface structures and mussel‐inspired surface chemistry, which can be used for multiple liquid manipulations. Highly ordered porous films prepared by the breath figure method enable convenient construction of surfaces with honeycomb‐patterned or nanosized pincushion‐like structures. Multiple liquid manipulations including no‐loss transportation of water droplets, water collection, programmable movement of water droplets, and chemical reaction monitoring are demonstrated on the micro/nanostructured surfaces. The proposed method is facile, energy‐efficient, and can be conducted for the preparation of superhydrophobic surfaces with high contrast adhesion patterns.