Background: The effect of thromboembolism prophylaxis on clinical outcomes, such as ventilator-associated events (VAEs), ICU stays, and mortality, remains controversial. This study was conducted to evaluate the effect of pharmacological thromboprophylaxis on VAEs, ICU stays, and ICU mortality among patients receiving mechanical ventilation (MV). Materials and Methods: A retrospective cohort study was conducted based on a well-established registry of healthcare-associated infections at ICUs in the West China Hospital system. Patients who consistently received MV for at least 4 days from 1 April 2015 to 31 December 2018 were included. Hazard ratios (HRs) were compared for three tiers of VAEs, ICU stays, and ICU mortality among patients receiving pharmacological thromboprophylaxis versus those without using the time-dependent Cox model. For the analyses of ICU stays and ICU mortality, we also used Fine-Gray models to disentangle the competing risks and outcomes of interest. Results: Overall, 6,140 patients were included. Of these, 3,805 received at least one prescription of antithrombosis agents. Treatments with antithrombosis agents were associated with lower risk of VAEs (HR: 0.87, 95% CI: 0.77, 0.98) and ICU mortality (HR: 0.72, 95% CI: 0.61, 0.86) than those without. Anticoagulants but not antiplatelet agents were associated with decreased risk of VAEs (HR: 0.86, 95% CI: 0.75, 0.98), ICU mortality (HR: 0.62, 95% CI: 0.51, 0.76), and less time to ICU discharge (HR: 1.15, 95% CI: 1.04, 1.28). Antithrombosis may be associated with decreased risk of VAEs in patients with D-dimer >5 mg/LFEU (HR: 0.84, 95%CI: 0.72, 0.98). Conclusions: Pharmacological thromboprophylaxis was associated with lower risk of VAEs and ICU mortality. Similar effects were observed between unfractionated heparins versus low-molecular-weight heparins.
Introduction The incidence of postoperative pulmonary complications (PPCs) following thoracic surgery is high, which increases the mortality rate, prolongs the length of hospital stay and increases medical costs. Some studies have confirmed that preoperative risk assessment, intraoperative anaesthesia methods and intraoperative mechanical ventilation strategies, including recruitment manoeuvres (RMs), can reduce the incidence of PPCs. Despite these improved strategies, the incidence of PPCs remains high. However, mechanical ventilation strategies have not been studied in the postoperative period. Methods and analysis We assume that RM during mechanical ventilation with sequential high-flow nasal oxygen therapy (HFNO) after extubation can maintain the opening of the postoperative alveoli and ultimately reduce the incidence of PPCs after thoracic surgery. We will include thoracic surgery patients and divide them into the RM with sequential HFNO group and the control group. They will be given RMs and sequential HFNO or be given conventional treatment. The sample size is 654 adult patients (327 per group) undergone thoracic surgery and presenting to the intensive care unit. Ethics and dissemination This study was approved by the Biomedical Research Ethics Committee of West China Hospital of Sichuan University (REC2019-730). It is expected that this study will lead to a randomised controlled trial. We assume that the findings will provide more evidence about PPCs and improve the management of patients undergone thoracic surgery. Trial registration number ChiCTR2100046356.
Background: The novel coronavirus disease 2019 (COVID-19) pandemic has become a global health crisis affecting over 200 countries worldwide. Extracorporeal membrane oxygenation (ECMO) has been increasingly used in the management of COVID-19-associated end-stage respiratory failure. However, the exact effect of ECMO in the management of these patients, especially with regards to complications and mortality, is unclear. Methods: This is the largest retrospective study of ECMO treated COVID-19 patients in China. A total of 50 ECMO-treated COVID-19 patients were recruited. We describe the main characteristics, the clinical features, ventilator parameters, ECMO-related variables and management details, and complications and outcomes of COVID-19 patients with severe acute respiratory distress syndrome (ARDS) that required ECMO support. Results: For those patients with ECMO support, 21 patients survived and 29 died (mortality rate: 58.0%). Among those who survived, PaO2 (66.3 mmHg [59.5-74.0 mmHg] and PaO2/FiO2 (68.0 mmHg [61.0-76.0 mmHg]) were higher in the survivors than those of non-survivors (PaO2: 56.8 mmHg (49.0-65.0 mmHg), PaO2/FiO2 (58.2 mmHg (49.0-68.0 mmHg), all P < 0.01) prior to ECMO. Patients who achieved negative fluid balance in the early resuscitation phase (within 3 days) had a higher survival rate than those who did not (P = 0.0003). Conclusions: In this study of 50 cases of ECMO-treated COVID-19 patients, a low PO2/FIO2 ratio before ECMO commencement may indicate a poor prognosis. Negative fluid balance in the early resuscitation phase during ECMO treatment was a predictor of increased survival post-ECMO treatment.
Stroke is one of the leading causes of disability and death. Increasing evidence indicates that β-hydroxybutyrate (BHB) exerts beneficial effects in treating stroke, but the underlying mechanism remains largely unknown. In this study, we injected different doses of BHB into the lateral ventricle in middle cerebral artery occlusion (MCAO) model rats and neuronal cells were treated with different doses of BHB followed by oxygen-glucose deprivation (OGD). We found that a moderate dose of BHB enhanced mitochondrial complex I respiratory chain complex I activity, reduced oxidative stress, inhibited mitochondrial apoptosis, improved neurological scores, and reduced infarct volume after ischemia. We further showed that the effects of BHB were achieved by upregulating the dedicated BHB transporter SMCT1 and activating the Erk/CREB/eNOS pathway. These results provide us with a foundation for a novel understanding of the neuroprotective effects of BHB in stroke.
Objectives: This prospective,randomized and controlled clinical trial was designed to investigate the effect of short course intensive insulin therapy(SCIIT) on stress-induced hyperglycemia and outcomes in critically ill patient. Methods:The diabetes or other illness which directly influenced blood glucose were excluded and the critically ill patients was maintained with normoglycemia((4.4-6.1) mmol/L) in the first seven days by intensive insulin therapy.After the first seven days,these patients was treated like conventional insulin treatment group.Conventional insulin treatment group was maintained with blood glucose at a level between 3.9-10 mmol/L.Results: Of 41 patients enrolled in the study,30 patients were eligible for analysis.After intervention stopped,blood glucose level in intensive insulin treatment group(5.92±1.24 mmol/L) was lower than in conventional insulin treatment group((9.22±)2.51 mmol/L).And in the same time,insulin consumptions in SCIIT group was lower than in conventional insulin treatment group.There was no significant difference in ICU mortality between two groups,although decreasing trend favored to treatment group. Conclusion: In critical ill patient,(SCIIT) can achieve similar blood glucose range when compared with the plan of IIT.The benefit of improving morbidity and mortality could be expected in large sample RCTs.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Courtyards are now used in many new buildings in China for taking advantage of better natural ventilation and thus improving the microclimate. However, when the building is equipped with a central air-conditioning (AC) system for space heating in winter, the warm air infiltration from the heated rooms enters into the courtyard and leads to changes in the natural ventilation characteristics in the courtyard. In the present study, the air environment and energy performance of a courtyard style office building in Shanghai were monitored in winter. The internal and external environmental parameters such as air temperature, CO2 and particle concentrations were measured simultaneously and continuously when the building was heated or was not in use. The results show that when there is no apparent pollutant source in the courtyard, a better microenvironment can be established and the air quality in the space is almost the same as the ambient air, because its natural ventilation is enhanced by the warm air infiltration from the heated rooms. Compared to a building without a courtyard, the building envelope heat loss can be reduced by 20% or 11% in winter for buildings with or without a corridor facing the courtyard enclosed by glass windows, respectively, due to the warm air infiltration which increases the air temperature in the courtyard.
Endothelial progenitor cells (EPCs) are increasingly becoming a major focus of regenerative medicine research and practice. The present study was undertaken to establish an appropriate procedure for isolation and characterization of EPCs from Rhesus monkeys for regenerative medicine research. Selective CD34+ and nonselective mononuclear EPCs were isolated from bone marrow and cultured under varying conditions. The results showed that nonselective mononuclear EPCs were a better choice for high yield of the target cells. The cells grew in M 200 better than in EGM-2, and supplementation with fetal bovine serum promoted cell proliferation; but serum level at 7.5% was better than at 10%. In addition, surface coating of the culture dishes with human fibronectin significantly improved the proliferation and ontogeny of the isolated EPCs. Immunocytochemistry including detection of markers CD34, CD133 and CD31 and double-staining for Ac-LDL and lectin verified the purity of the cultured mononuclear EPCs. By a thorough analysis, we established a practical procedure for isolation and propagation of EPCs from Rhesus monkeys. This procedure would help using these valuable cells for regenerative medicine research.