Abstract Since the efficiency and speed of computing has increased significantly in the last decades, in silico‐approaches, e.g., quasi‐experimental analyses based on mechanistic simulations combined with Monte Carlo (MC) methods, are on the rise for uncertainty analyses and estimation of uncertainty propagation. The power and convenience of these approaches for high‐throughput processes will be demonstrated with a case study including miniaturized screenings on robotic platforms: a binding study for lysozyme on the adsorbent SP Sepharose FF in 96‐well format. All relevant uncertainties during the experimental preparations and automated high‐throughput experimentation were identified, quantified, and then embedded in a simulation algorithm for the calculation of uncertainty propagation based on MC sampling. A proof‐of‐concept for this approach is then followed by the simulation‐based analysis of various case scenarios. The MC‐based approach can easily be transferred to uncertainty analyses in other high‐throughput processes.
Covalent attachment of synthetic polymers to proteins, known as protein–polymer conjugation, is currently one of the main approaches for improving the physicochemical properties of these biomolecules. The most commonly employed polymer is polyethylene glycol (PEG), as evidenced by extensive research and clinical track records for its use in biopharmaceuticals. However, the occurrence of allergic reactions or hypersensitivity and the discovery of PEG antibodies, on the one hand, and the rise of controlled polymerization techniques and novel monomers, on the other hand, have been driving the search for alternative polymers for bioconjugation. The present study describes the synthesis, purification, and properties of conjugates of lysozyme with poly(N-acryloylmorpholine) (PNAM) and poly(oligoethylene glycol methyl ether methacrylate) (POEGMA). Particularly, conjugate species with distinct conjugation degrees are investigated for their residual activity, aggregation behavior, and solubility, by using a high-throughput screening approach. Our study showcases the importance of evaluating conjugates obtained by nonsite-specific modification through isolated species with discrete degrees of conjugation rather than on the batch level. Monovalent conjugates with relatively low molar mass polymers displayed equal or even higher activity than the native protein, while all conjugates showed an improved protein solubility. To achieve a comparable effect on solubility as with PEG, PNAM and POEGMA of higher molar masses were required.
The availability of clinical-scale downstream processing strategies for cell-based products presents a critical juncture between basic research and clinical development. Aqueous two-phase systems (ATPS) facilitate the label-free, scalable, and cost-effective separation of cells, and are a versatile tool for downstream processing of cell-based therapeutics. Here, we report the application of a previously developed robotic screening platform, here extended to enable a multiplexed high-throughput cell partitioning analysis in ATPS. We investigated the influence of polymer molecular weight and tie-line length on the resolution of five model cell lines in "charge-sensitive" polyethylene-glycol (PEG)-dextran ATPS. We show, how these factors influence cell partitioning, and that the combination of low molecular weight PEGs and high molecular weight dextrans enable the highest resolution of the five cell lines. Furthermore, we demonstrate that the separability of each cell line from the mixture is highly dependent on the polymer molecular weight composition and tie-line length. Using a countercurrent distribution model we demonstrate that our screenings yielded conditions that theoretically enable the isolation of four of the five cell lines with high purity (>99.9%) and yield.