SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.
Background: Congenital hyperinsulinism (CHI) is associated with focal hyperplasia of endocrine tissue in 40–65% of patients. Focal CHI is sporadic and is caused by a germline, paternally inherited, mutation of the SUR1 (ABCC8) or KIR6.2 (KCNJ11) genes (encoding subunits of the pancreatic ATP-dependent potassium channel) together with somatic maternal haploinsufficiency for 11p15.5. Plurifocal or large forms of focal CHI are a cause of apparent failure of surgery, and their underlying mechanism has not been thoroughly investigated. Patients: We here report two patients with bifocal CHI as evidenced by relapsing hypoglycemia after removal of the first focal lesion and the detection of a second, distinct, focal adenomatous hyperplasia during later surgery (patients 1 and 2) and a patient with a giant focal lesion involving the major part of the pancreas (patient 3). Results: In the three patients, a germline, paternally inherited, mutation of SUR1 was found. In patients 1 and 2, haploinsufficiency for the maternal 11p15.5 region resulted from a somatic deletion specific for each of the focal lesions, as shown by the diversity of deletion break points. In patient 3, an identical somatic maternal 11p15 deletion demonstrated by similar break points was shown in two independent lesion samples, suggesting a very early event during pancreas embryogenesis. Conclusion: Individual patients with focal hyperinsulinism may have more than one focal pancreatic lesion due to separate somatic maternal deletion of the 11p15 region. These patients and those with solitary focal lesions may follow the two-hit model described by Knudson. The stage of embryogenesis at which the somatic event occurs may account for the observed histological diversity (early event giant lesion, later event small lesion).
Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.
Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.
Aromatic amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disorder resulting in a combined dopamine and serotonin deficiency. About 50% of the cases set in the neonatal period. Here, we report an atypical clinical presentation with moderate symptoms. At 10months old, the patient presented paroxysmal eye movements without seizures, and feeding difficulties which were attributed to gastroesophageal reflux. She was investigated at the age of 7years, because of orofacial dyspraxia, hypomimie, axial hypotonia and focal segmental dystonia, bilateral ptosis, without evidence for cognitive impairment. HVA [110nM; (reference value (rv): 202-596)] and HIAA (12nM; rv: 87-366) decreased, OMD (520nM; rv: 5-60) and 5-HTP (56nM; rv: 2-16) increased in CSF. We confirmed the diagnosis of AADC deficiency because the activity in plasma was low: 4pmol/min/ml; rv: 16-137. The kinetic analysis revealed a sixfold increase in the apparent affinity for L-dopa (4.26mM; control=0.71), but the V (max) was unchanged (37.5pmol dopamine/min/ml; control=39.1), suggesting a modification in the substrate binding-site. Molecular analysis revealed two heterozygous mutations in the DDC gene: c1040G > A; pR347Q already described, and a novel mutation c478C > T, pR160W. (1) CSF neurotransmitters metabolites suggested a moderate AADC deficiency; (2) The initial velocity saturation curve for L-dopa displayed a cooperative ligand binding behavior, in keeping with the modifications of the three-dimensional structure, induced by the amino acid substitutions (3) The treatment combination of L-dopa with pyridoxine dramatically improved the quality of life, the fatigability, and the paroxysmal eye movements.