Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.
We photoexcite SrTiO 3 and EuTiO 3 in their purely soft-mode-driven structurally distorted phase and trace the structural order parameter via ultra-short x-rays. We observe a rapid decay for SrTiO 3 and an intriguing transient enhancement for EuTiO3.
We investigate the structural and magnetic origins of the unusual ultrafast second-harmonicgeneration (SHG) response of femtosecond-laser-excited nickel oxide (NiO) previously attributed to oscillatory reorientation dynamics of the magnetic structure induced by d-d excitations. Using time-resolved x-ray diffraction from the (3/2 3/2 3/2) magnetic planes, we show that changes in the magnitude of the magnetic structure factor following ultrafast optical excitation are limited to $\Delta/$ = 1.5% in the first 30 ps. An extended investigation of the ultrafast SHG response reveals a strong dependence on wavelength as well as characteristic echoes, both of which give evidence for an acoustic origin of the dynamics. We therefore propose an alternative mechanism for the SHG response based on perturbations of the nonlinear susceptibility via optically induced strain in a spatially confined medium. In this model, the two observed oscillation periods can be understood as the times required for an acoustic strain wave to traverse one coherence length of the SHG process in either the collinear or anti-collinear geometries.
Intense, few-cycle pulses in the terahertz frequency range have strong potential for schemes of control over vibrational modes in solid-state materials in the electronic ground-state. Here we report an experiment using single cycle terahertz pulses to directly excite lattice vibrations in the ferroelectric material $\mathrm{Sn_2P_2S_6}$ and ultrafast x-ray diffraction to quantify the resulting structural dynamics. A model of a damped harmonic oscillator driven by the transient electric field of the terahertz pulses describes well the movement of the Sn$^{2+}$ ion along the ferroelectric soft mode. Finally, we describe an anharmonic extension of this model which predicts coherent switching of domains at peak THz-frequency fields of 790 kV/cm.
Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.
We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic ${\mathrm{TbMnO}}_{3}$ by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. The use of orthogonal linear x-ray polarizations provides information on the contribution from the different magnetic moment directions, which can be interpreted as signatures from multiferroic cycloidal spin order and sinusoidal spin order. Tracking these signatures in the time domain enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond time scale. The transient phase is shown to exhibit mostly spin density wave character, as in the adiabatic case, while nevertheless retaining the wave vector of the cycloidal long-range order. Two different pump photon energies, 1.55 and 3.1 eV, lead to population of the conduction band predominantly via intersite $d\ensuremath{-}d$ or intrasite $p\ensuremath{-}d$ transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a time scale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic order and orbital reconstruction. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such theoretical studies.
Using femtosecond time-resolved x-ray diffraction, we directly monitor the coherent lattice dynamics through an ultrafast charge-density-wave-to-metal transition in the prototypical Peierls system ${\mathrm{K}}_{0.3}{\mathrm{MoO}}_{3}$ over a wide range of relevant excitation fluences. While in the low fluence regime we directly follow the structural dynamics associated with the collective amplitude mode; for fluences above the melting threshold of the electronic density modulation we observe a transient recovery of the periodic lattice distortion. We can describe these structural dynamics as a motion along the coordinate of the Peierls distortion triggered by the prompt collapse of electronic order after photoexcitation. The results indicate that the dynamics of a structural symmetry-breaking transition are determined by a high-symmetry excited state potential energy surface distinct from that of the initial low-temperature state.
Femtosecond time-resolved x-ray diffraction is employed to study the dynamics of the periodic lattice distortion (PLD) associated with the charge-density-wave (CDW) in K0.3MoO3. Using a multi-pulse scheme we show the ability to extend the lifetime of coherent oscillations of the PLD about the undistorted structure through re-excitation of the electronic states. This suggests that it is possible to enter a regime where the symmetry of the potential energy landscape corresponds to the high symmetry phase but the scattering pathways that lead to the damping of coherent dynamics are still controllable by altering the electronic state population. The demonstrated control over the coherence time offers new routes for manipulation of coherent lattice states.
We performed ultrafast time-resolved near-infrared pump, resonant soft x-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic $\mathrm{TbMn}{\mathrm{O}}_{3}$ at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of $22.3\ifmmode\pm\else\textpm\fi{}1.1\phantom{\rule{0.16em}{0ex}}\mathrm{ps}$, which is much slower than the \ensuremath{\sim}1 ps melting times previously observed in other systems. To explain the data, we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wave vector $q$ of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wave vector on these time scales.