The UK Initial Operational Response (IOR) to chemical incidents includes improvised decontamination procedures, which use readily available materials to rapidly reduce risk to potentially exposed persons. A controlled, cross-over human volunteer study was conducted to investigate the effectiveness of improvised dry and wet decontamination procedures on skin, both alone, and in sequence. A simulant contaminant, methyl salicylate (MeS) in vegetable oil with a fluorophore was applied to three locations (shoulder, leg, arm). Participants then received no decontamination (control) or attempted to remove the simulant using one of three improvised protocols (dry decontamination; wet decontamination; combined dry and wet decontamination). Simulant remaining on the skin following decontamination was quantified using both Gas Chromatography Tandem Mass Spectrometry (GC-MSMS) for analysis of MeS and UV imaging to detect fluorophores. Additionally, urine samples were collected for 24 hours following application for analysis of MeS. Significantly less simulant was recovered from skin following each improvised decontamination protocol, compared to the no decontamination control. Further, combined dry and wet decontamination resulted in lower recovery of simulant when compared to either dry or wet decontamination alone. Irrespective of decontamination protocol, significantly more simulant remained on the shoulders compared to either the arms or legs, suggesting that improvised decontamination procedures are less effective for difficult to reach areas of the body. There was no effect of decontamination on excreted MeS in urine over 24 hours. Overall, findings indicate that improvised decontamination is an effective means of rapidly removing contaminants from skin, and combinations of improvised approaches can increase effectiveness in the early stages of decontamination and in the absence of specialist resources at an incident scene. However, the variable control and consistency of improvised decontamination techniques means that further intervention is likely to be needed, particularly for less accessible areas of the body.
Abstract The Initial Operational Response (IOR) to chemical incidents is a suite of rapid strategies including evacuation, disrobe and improvised and interim decontamination. IOR and Specialist Operational Response (SOR) decontamination protocols involving mass decontamination units would be conducted in sequence by UK emergency services following a chemical incident, to allow for safe onward transfer of casualties. As part of a series of human volunteer studies, we examined for the first time, the effectiveness of UK IOR and SOR decontamination procedures alone and in sequence. Specifically, we evaluated the additional contribution of SOR, when following improvised and interim decontamination. Two simulants, methyl salicylate (MeS) with vegetable oil and benzyl salicylate (BeS), were applied to participants’ skin. Participants underwent improvised dry, improvised wet, interim wet, specialist decontamination and a no decontamination control. Skin analysis and UV photography indicated significantly lower levels of both simulants remaining following decontamination compared to controls. There were no significant differences in MeS levels recovered between decontamination conditions. Analysis of BeS, a more persistent simulant than MeS, showed that recovery from skin was significantly reduced following combined IOR with SOR than IOR alone. These results show modest additional benefits of decontamination interventions conducted in sequence, particularly for persistent chemicals, supporting current UK operational procedures.
System learning from major incidents is essential for enhancing preparedness for responding to future adverse events. Sharing learning not only stimulates further improvements, preventing the repetition of mistakes, but may also promote collaboration and the adoption of evidenced-based best practises. As part of a qualitative interview study designed to explore lessons learned, this paper describes the experiences and perspectives of 30 staff from the public health agency responsible for the national COVID-19 response in the United Kingdom. The focus of the interviews was on enabling factors and practises that worked well, as well as those that were more challenging, and which, if addressed, could improve responses to future infectious disease incidents. The interviews elicited valuable insights across various thematic areas that could inform emergency preparedness activities for future infectious disease outbreaks. The outcomes of this study, while integral for the UK agency responsible for public health, extend beyond organisational boundaries and contribute to a broader spectrum of activities aimed at facilitating global learning from the COVID-19 response.
Background On-scene improvised and interim decontamination protocols in the Initial Operational Response to chemical incidents aim for rapid intervention to minimise injury before specialist capabilities arrive. This study examines the effectiveness of UK improvised and interim protocols conducted in sequence. Method A simulant with methyl salicylate (MeS) in vegetable oil and a fluorophore was applied to participants’ shoulders, arms and legs. Participants either received no decontamination or used one of four decontamination protocols: improvised dry, improvised wet, improvised dry followed by interim or improvised wet followed by interim. Remaining simulant on the skin was quantified using gas chromatography tandem mass spectrometry for MeS analysis and UV imaging for fluorophore detection. Additionally, urine samples were collected for 8 hours post application to analyse MeS levels. Results Significantly less simulant was recovered from the skin post decontamination compared with no decontamination. There were no differences in the total simulant recovered across all decontamination conditions. However, significantly more simulant was recovered from the shoulder compared with the arm and leg. Variation in simulant recovery from different application areas was significantly higher in improvised-only conditions than in combined conditions. Decontamination did not affect the amount of MeS excreted in urine over 8 hours. Conclusion This research supports current practice of starting decontamination as soon as possible after chemical exposure and highlights the importance of implementing interim decontamination following improvised decontamination.
Planning for major incidents involving the release of hazardous chemicals has been informed by a multi-disciplinary research agenda which has sought to inform all aspects of emergency response, but with a focus in recent years on mass casualty decontamination. In vitro and human volunteer studies have established the relative effectiveness of different decontamination protocols for a range of chemical agents. In parallel, a programme of research has focused on communicating with and managing large numbers of contaminated casualties at the scene of an incident. We present an accessible overview of the evidence underpinning current casualty decontamination strategies. We highlight where research outcomes can directly inform response planning, including the critical importance of beginning the decontamination process as soon as possible, the benefits of early removal of contaminated clothing, the evidence under-pinning dry and wet decontamination and how effective communication is essential to any decontamination response. We identify a range of priority areas for future research including establishing the significance of the 'wash-in' effect and developing effective strategies for the decontamination of hair. We also highlight several areas of future methodological development, such as the need for novel chemical simulants. Whilst considerable progress has been made towards incorporating research outcomes into operational policy and practice, we outline how this developing evidence-base might be used to inform future iterations of mass casualty decontamination guidance.
Abstract The decontamination of exposed persons is a priority following the release of toxic chemicals. Efficacious decontamination reduces the risk of harm to those directly affected and prevents the uncontrolled spread of contamination. Human studies examining the effectiveness of emergency decontamination procedures have primarily focused on decontaminating skin, with few examining the decontamination of hair and scalp. We report the outcome of two studies designed to evaluate the efficacy of current United Kingdom (UK) improvised, interim and specialist mass casualty decontamination protocols when conducted in sequence. Decontamination efficacy was evaluated using two chemical simulants, methyl salicylate (MeS) and benzyl salicylate (BeS) applied to and recovered from the hair of volunteers. Twenty-four-hour urinary MeS and BeS were measured as a surrogate for systemic bioavailability. Current UK decontamination methods performed in sequence were partially effective at removing MeS and BeS from hair and underlying scalp. BeS and MeS levels in urine indicated that decontamination had no significant effect on systemic exposure raising important considerations with respect to the speed of decontamination. The decontamination of hair may therefore be challenging for first responders, requiring careful management of exposed persons following decontamination. Further work to extend these studies is required with a broader range of chemical simulants, a larger group of volunteers and at different intervention times.
Abstract The Initial Operational Response (IOR) to chemical incidents is a suite of rapid strategies including evacuation, disrobe and improvised and interim decontamination. IOR and Specialist Operational Response (SOR) decontamination protocols involving mass decontamination units would be conducted in sequence by UK emergency services following a chemical incident, to allow for safe onward transfer of casualties. As part of a series of human volunteer studies, we examined the effectiveness of IOR and SOR decontamination procedures alone and in sequence. Specifically, we evaluated the additional contribution of SOR, when following improvised and interim decontamination. Two simulants, methyl salicylate (MeS) with vegetable oil and benzyl salicylate (BeS), were applied to participants’ skin. Participants underwent improvised dry, improvised wet, interim wet, specialist decontamination and a no decontamination control. Skin analysis and UV photography indicated significantly lower levels of both simulants remaining following decontamination compared to controls. There were no significant differences in MeS levels recovered between decontamination conditions. Analysis of BeS, a more persistent simulant than MeS, showed that recovery from skin was significantly reduced following combined IOR with SOR than IOR alone. These results show modest additional benefits of decontamination interventions conducted in sequence, particularly for persistent chemicals, supporting current UK operational procedures.