To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.
Hypertriglyceridemia is a common lipid disorder as well as hypercholesterolemia. However clinical significance of hypertriglyceridemia is not fully understood because of its heterogeneous lipoprotein phenotypes and complex etiology. Severe hypertriglyceridemia increases the risk for pancreatitis, whereas mild or moderate hypertriglyceridemia may be a risk factor for cardiovascular disease. Patients with hypertriglyceridemia are usually accompanied by other cardiovascular related disorders, such as central obesity, type 2 diabetes, and liver steatosis. Ectopic fat accumulation is often seen in hypertriglyceridemic subjects and various organ injuries are developed by the lipotoxicity. Hypertriglyceridemia is strongly associated with remnant lipoprotein accumulation, increased small dense LDL, and low HDL-cholesterol. All these lipid abnormalities are recognized as cardiovascular risk factors. The pathophysiology of lipoprotein metabolism related to the hypertriglyceridemia is summarized in this brief review.
A missence single-nucleotide polymorphism (SNP) in the protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene known as R620W (rs2476601) was recently reported to be associated with several autoimmune diseases including Graves' disease (GD). The association was repeatedly confirmed in the populations of North European ancestry. However, this amino acid was reported to be nonpolymorphic in the Asian populations. Since the gene confers an impact on autoimmune diseases, we attempt to explore an association between the PTPN22 gene and autoimmune thyroid disease (AITD) in a Japanese population without restricting to rs2476601. Previous investigations have also demonstrated that two intronic SNPs (rs706778 and rs3118470) in the interleukin-2 receptor-alpha (IL2RA) gene were associated with type 1 diabetes in the Japanese population.We genotyped the five SNPs (rs12760457, rs2797415, rs1310182, rs2476599, and rs3789604) of the PTPN22 and the two SNPs (rs706778 and rs3118470 in the IL2RA gene) in 456 Japanese patients with AITD (286 with GD, 170 with Hashimoto's thyroiditis) and 221 matched Japanese control subjects. Seven SNPs were analyzed by either the SNAPshot method or the high-resolution melting and unlabeled probe methods. Case-control association studies were performed using the chi(2) and Fisher's exact tests with Yates correction. Haplotype was conducted using the expectation-maximization algorithm.No association was found between any of the individual SNPs of the PTPN22 gene and AITD. Permutation analysis revealed that the distribution of one haplotype is significantly different between patients with AITD and controls (p = 0.0036). A novel protective effect of a haplotype containing five SNPs was observed (p < 0.0001 for AITD, p < 0.0001 for GD, and p < 0.0001 for Hashimoto's thyroiditis, respectively). The GG allele of rs3118470 in the IL2RA gene was significantly associated with GD (p = 0.03), although the association was weak.Significant difference in the distribution of the haplotype suggests that the PTPN22 gene rather than rs2476601 is involved in the development of AITD in the Japanese population.
LDL apheresis (LDL-A) is used for drug-resistant nephrotic syndrome (NS) as an alternative therapy to induce remission by improvement of hyperlipidemia. Several clinical studies have suggested the efficacy of LDL-A for refractory NS, but the level of evidence remains insufficient. A multicenter prospective study, POLARIS (Prospective Observational Survey on the Long-Term Effects of LDL Apheresis on Drug-Resistant Nephrotic Syndrome), was conducted to evaluate its clinical efficacy with high-level evidence.Patients with NS who showed resistance to primary medication for at least 4 weeks were prospectively recruited to the study and treated with LDL-A. The long-term outcome was evaluated based on the rate of remission of NS 2 years after treatment. Factors affecting the outcome were also examined.A total of 58 refractory NS patients from 40 facilities were recruited and enrolled as subjects of the POLARIS study. Of the 44 subjects followed for 2 years, 21 (47.7%) showed remission of NS based on a urinary protein (UP) level <1.0 g/day. The UP level immediately after LDL-A and the rates of improvement of UP, serum albumin, serum creatinine, eGFR, and total and LDL cholesterol after the treatment session significantly affected the outcome.Almost half of the cases of drug-resistant NS showed remission 2 years after LDL-A. Improvement of nephrotic parameters at termination of the LDL-A treatment was a predictor of a favorable outcome.