Studies of the single-stranded DNA bacteriophages have played major roles in the development of modern microbial genetics. Early on, these phage and host systems served as models for the replication of more complex genomes and they taught us strategies for the frugal use of genomic information. In more recent times, examining the structure and assembly of these bacteriophages has provided new insights into molecular communication. In this chapter, we review literature on the life cycles of these phages, their modes of genome replication, and the assembly of intact virions. Finally, we touch on some of the biotechnological uses of these phages, which continue to have a prominent place in modern genetics.
The nucleotide sequence of the 12.6 kb region between the mutS and rpoS genes of Salmonella enterica serovar Typhimurium LT2 (S. typhimurium) was compared to other enteric bacterial mutS-rpoS intergenic regions. The mutS-rpoS region is composed of three distinct segments, designated HK, O and S, as defined by sequence similarities to contiguous ORFs in other bacteria. Inverted chromosomal orientations of each of these segments are found between the mutS and rpoS genes in related ENTEROBACTERIACEAE: The HK segment is distantly related to a cluster of seven ORFs found in Haemophilus influenzae and a cluster of five ORFs found between the mutS and rpoS genes in Escherichia coli K-12. The O segment is related to the mutS-rpoS intergenic region found in E. coli O157:H7 and Shigella dysenteriae type 1. The third segment, S, is common to diverse Salmonella species, but is absent from E. coli. Despite the extensive collinearity and conservation of the overall genetic maps of S. typhimurium and E. coli K-12, the insertions, deletions and inversions in the mutS-rpoS region provide evidence that this region of the chromosome is an active site for horizontal gene transfer and rearrangement.
Optical maps of 11 Escherichia coli O157 : H7 strains have been generated by the assembly of contiguous sets of restriction fragments across their entire 5.3 to 5.6 Mbp chromosomes. Each strain showed a distinct, highly individual configuration of 500-700 BamHI fragments, yielding a map resembling a DNA 'bar code'. The accuracy of optical mapping was assessed by comparing directly the in silico restriction maps of two wholly sequenced reference genomes of E. coli O157 : H7, i.e. EDL933 and the Sakai isolate (RIMD 0509952), with the optical maps of the same strains. The optical maps of nine other E. coli O157 : H7 strains were compared similarly, using the sequence-based maps of the Sakai and EDL933 strains as references. A total of 91 changes at 28 loci were positioned and sized; these included complex chromosomal inversions, insertions, deletions, substitutions, as well as a number of simple RFLPs. The optical maps defined unique genome landmarks in each of the strains and demonstrated the ability of optical mapping to distinguish and differentiate, at the individual level, strains of this important pathogen.
ABSTRACT Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.
Optical maps for five representative clinical, food-borne and bovine-derived isolates from the 2006 Escherichia coli O157 : H7 outbreak linked to fresh spinach in the United States showed a common set of 14 distinct chromosomal markers that define the outbreak strain. Partial 454 DNA sequencing was used to characterize the optically mapped chromosomal markers. The markers included insertions, deletions, substitutions and a simple single nucleotide polymorphism creating a BamHI site. The Shiga toxin gene profile of the spinach-associated outbreak isolates (stx1(-) stx2(+) stx2c(+)) correlated with prophage insertions different from those in the prototypical EDL933 and Sakai reference strains (stx1(+) stx2(+) stx2c(-)). The prophage occupying the yehV chromosomal position in the spinach-associated outbreak isolates was similar to the stx1(+) EDL933 cryptic prophage V, but it lacked the stx1 gene. In EDL933, the stx2 genes are within prophage BP933-W at the wrbA chromosomal locus; this locus was unoccupied in the spinach outbreak isolates. Instead, the stx2 genes were found within a chimeric BP933-W-like prophage with a different integrase, inserted at the argW locus in the outbreak isolates. An extra set of Shiga toxin genes, stx2c, was found in the outbreak isolates within a prophage integrated at the sbcB locus. The optical maps of two additional clinical isolates from the outbreak showed a single, different prophage variation in each, suggesting that changes occurred in the source strain during the course of this widespread, multi-state outbreak.