The goal of this study was to identify chromosomal regions likely to contain schizophrenia susceptibility genes.A genomewide map of 310 microsatellite DNA markers with average spacing of 11 centimorgans was genotyped in 269 individuals--126 of them with schizophrenia-related psychoses--from 43 pedigrees. Nonparametric linkage analysis was used to assess the pattern of allele sharing at each marker locus relative to the presence of disease.Nonparametric linkage scores did not reach a genomewide level of statistical significance for any marker. There were five chromosomal regions in which empirically derived p values reached nominal levels of significance at eight marker locations. There were p values less than 0.01 at chromosomes 2q (with the peak value in this region at D2S410) and 10q (D10S1239), and there were p values less than 0.05 at chromosomes 4q (D4S2623), 9q (D9S257), and 11q (D11S2002).The results do not support the hypothesis that a single gene causes a large increase in the risk of schizophrenia. The sample (like most others being studied for psychiatric disorders) has limited power to detect genes of small effect or those that are determinants of risk in a small proportion of families. All of the most positive results could be due to chance, or some could reflect weak linkage (genes of small effect). Multicenter studies may be useful in the effort to identify chromosomal regions most likely to contain schizophrenia susceptibility genes.
Karyotypic analysis, loss of somatic heterozygosity, microcell fusion and cDNA transfection studies have provided compelling evidence that at least one tumour suppressor gene for melanoma resides on chromosome 6. In an attempt to further define the regions to which these putative suppressor genes map, we have carried out loss of heterozygosity (LOH) studies on DNA from 25 fresh melanoma tumours for 9 simple tandem repeat (STR) polymorphism markers spanning chromosome 6. Four samples displayed LOH or homozygosity for all markers studied, indicating that they had lost one homologue of chromosome 6. An additional 3 samples showed LOH for all markers on 6q. Furthermore, 30 melanoma cell lines, for which there were no matching somatic DNA samples, were analyzed for hemizygosity of markers on 6q. One cell line had a homozygous deletion of all markers tested and a further 12 cell lines displayed only one allele for 3 or 4 contiguous markers, indicating that most, if not all of these samples were hemizygous for the region of 6q distal to D6S87. Overall, the rate of LOH on 6q in the 55 melanoma DNAs was 35%, and there were no losses of markers on 6p without concomitant loss of markers on 6q. Two of 5 samples derived from primary melanomas showed LOH, which indicates that LOH for the melanoma suppressor gene on 6q, which maps to a region that contains the SOD2 locus, is a frequent and early event in melanoma tumorigenesis.
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or indeterminate 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.