Can sperm donation increase live birth rates following ICSI in advanced maternal age (AMA) patients?Sperm donation increases the live birth rate in AMA ICSI cycles.In ICSI practice, sperm donation has been predominantly applied to overcome male infertility. The involvement of paternal age and lower sperm quality in the severe reduction in fertility observed in AMA patients remains to be clarified.Retrospective multicenter cohort study including data generated between 2015 and 2019 from 755 ICSI cycles achieving a fresh embryo transfer, of which 337 were first homologous cycles (normozoospermic partner sperm and homologous oocytes) and 418 were first sperm donation cycles (donor sperm and homologous oocytes). The association of sperm origin (partner vs donor) with live birth was assessed by multivariate analysis in non-AMA (<37 years, n = 278) and AMA (≥37 years, n = 477) patients, separately, including in the model all variables previously found to be associated with live birth in a univariate analysis (number of MII oocytes recovered, number of embryos transferred, and maternal age). ICSI outcomes were compared between sperm donation and homologous cycles in overall, non-AMA and AMA patients.The study was conducted in three fertility clinics and included 755 Caucasian patients aged 24-42 years undergoing their first homologous or sperm donation ICSI cycle achieving a fresh embryo transfer.The multivariate analysis revealed that sperm donation was positively associated with the likelihood of a live birth independently of all other variables tested in AMA (P = 0.02), but not in non-AMA patients. Live birth, delivery, and miscarriage rates differed substantially between sperm donation and homologous AMA cycles; live birth and delivery rates were 70-75% higher (25.4% vs 14.5% and 22.5% vs 13.5%, respectively; P < 0.01), while miscarriage occurrence was less than half (18.0% vs 39.5%; P < 0.01) in sperm donation compared to homologous AMA cycles.This study is limited by its retrospective nature, differences in patients profiles between sperm donation and homologous-control groups and varying proportion of donor cycles between fertility centers, although these variations have been controlled for in the statistical analysis.The findings suggest that sperm donation increases live birth rates while reducing miscarriage occurrence in AMA patients, and thus may be a valid strategy to improve ICSI outcomes in this growing and challenging patient group.N/A.N/A.
Does the time from ovum pick-up (OPU) to frozen embryo transfer (FET) affect reproductive outcomes in a freeze-all strategy? Our study did not detect statistically significant differences between first and subsequent cycles, clinically relevant differences are not ruled out and further and larger studies are required. Following controlled ovarian hyperstimulation (COH) delaying FET until the endometrium has returned to an optimal pre-stimulation state may have a significant emotional impact on patients, which adds to the stress and anxiety accompanying a standard IVF cycle. Currently there is no agreement on the best time to perform a FET after a freeze-all cycle in order to maximize reproductive outcomes for the patient. Retrospective cohort study of 512 freeze-all cycles, performed between January 2012 and December 2014. COH was performed by either a GnRH antagonist (n = 397) or a long GnRH agonist protocol (n = 115). Ovulation was triggered using either a GnRH agonist (n = 258) or hCG (n = 254). Endometrial preparation was performed in an artificial cycle by either oral (n = 238) or transdermal (n = 274) oestrogen. Differences were considered significant if P < 0.05. Reproductive outcomes between FETs which took place either within the first menstrual cycle following OPU (Cycle 1; n = 263) or afterwards (Cycle ≥2; n = 249) were compared. Student's t-test for independent samples, Mann–Whitney U-test and Chi-square analysis were used where appropriate. A multivariable logistic regression analysis was performed adjusting for maternal age, drug used for ovulation trigger, number of retrieved oocytes, number of embryos obtained, day of embryonic development at transfer, number of embryos transferred and type of endometrial preparation. Differences were considered significant if P < 0.05. Live birth rate (LBR) was significantly higher in FET performed during Cycle 1 vs Cycle ≥2 (37.6% vs 27.3%, respectively; P = 0.01) before adjusting for confounding factors. We found no difference for biochemical pregnancy (49.8% vs 43.8%; P = 0.17), clinical pregnancy (44.1% vs 36.1%; P = 0.07) or pregnancy loss (11.8% vs 16.1%; P = 0.16). A multivariable analysis found no impact of timing of elective FET on LBR (odds ratio, OR 0.73; 95% CI 0.49–1.08). The impact remained not significant after adjusting for number of retrieved oocytes, drug used for ovulation trigger (hCG vs GnRH agonist) and reason for cryopreservation. The factors that significantly affected LBR were: maternal age in both age categories (women between 35 and 40 years vs women below 35 years, OR 0.63, 95% CI 0.4–0.95; and women over 40 years vs women below 35 years, OR 0.34, 95% CI 0.2–0.7), day of embryonic development at transfer (day +4 vs +3; OR 1.7, 95% CI 1.1–2.8) and number of transferred embryos (OR 2.2, 95% CI 1.4–3.3) and oestrogen used for endometrial preparation (transdermal vs oral; OR 0.62, 95% CI 0.4–0.9). The main limitation of our study is its retrospective nature. Although we adjusted our statistical analysis for a number of known and suspected confounders, we cannot exclude the possibility of residual confounding factors. According to our results, clinicians might not need to wait more than one menstrual cycle before performing FET. This allows us to reduce unnecessary delays in FET, without compromising reproductive outcomes. No funding was sought for this study. Authors declare no competing interests. NA.
Objective: Differences in the length of the menstrual cycle (MCL) have been associated with variable female fecundity. However, the reason for these differences is so far unknown. The donor-recipient model, separating uterine from ovarian factors, allows clarifying the origin of MCL-associated fecundity variations.
Abstract Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated. Non-canonical imprinting, reliant on differential allelic H3K27me3 enrichment, has been reported in mouse and rat pre-implantation embryos, often overlapping long terminal repeat (LTR)-derived promoters. These non-canonical imprints lose parental allele-specific H3K27me3 specificity, subsequently gaining DNA methylation on the same allele in extra-embryonic tissues resulting in placenta-specific, somatically acquired maternal DMRs. To determine if similar non-canonical imprinting is present in the human placenta, we interrogated allelic DNA methylation for a selected number of loci, including (i) the human orthologues of non-canonical imprinted regions in mouse and rat, (ii) promoters of human LTR-derived transcripts, and (iii) CpG islands with intermediate placenta-specific methylation that are unmethylated in gametes and pre-implantation embryos. We failed to identify any non-canonical imprints in the human placenta whole villi samples. Furthermore, the assayed genes were shown to be biallelically expressed in human pre-implantation embryos, indicating they are not imprinted at earlier time points. Together, our work reiterates the continued evolution of placenta-specific imprinting in mammals, which we suggest is linked to epigenetic differences during the maternal-to-embryo transition and species-specific integration of retrotransposable elements.
Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable
Sao Paulo State Univ UNESP, Ctr Human Reprod Prof Franco Jr, Paulista Ctr Diag Res & Training, Dept Gynecol & Obstet,Botucatu Med Sch, Ribeirao Preto, Brazil
Summary Fertilization failure (FF) and zygotic arrest after ICSI have a huge effect on both patients and clinicians, but both problems are usually unexpected and cannot be properly diagnosed. Fortunately, in recent years, gene sequencing has allowed the identification of multiple genetic variants underlying failed ICSI outcomes, but the use of this approach is still far from routine in the fertility clinic. In this systematic review, the genetic variants associated with FF, abnormal fertilization and/or zygotic arrest after ICSI are compiled and analyzed. Forty-seven studies were included. Data from 141 patients carrying 121 genetic variants affecting 16 genes were recorded and analyzed. In total, 27 variants in PLCZ1 (in 50 men) and 26 variants in WEE2 (in 24 women) are two of the factors related to oocyte activation failure that could explain a high percentage of male-related and female-related FF. Additional variants identified were reported in WBP2NL , ACTL9, ACTLA7, and DNAH17 (in men), and TUBB8 , PATL2 , TLE6 , PADI6 , TRIP13 , BGT4, NLRP5, NLRP7 , CDC20 and ZAR1 (in women). Most of these variants are pathogenic or potentially pathogenic (89/121, 72.9%), as demonstrated by experimental and/or in silico approaches. Most individuals carried bi-allelic variants (89/141, 63.1%), but pathogenic variants in heterozygosity have been identified for PLCZ1 and TUBB8 . Clinical treatment options for affected individuals, such as chemical-assisted oocyte activation (AOA) or PLCZ1 cRNA injection in the oocyte, are still experimental. In conclusion, a genetic study of known pathogenic variants may help in diagnosing recurrent FF and zygotic arrest and guide patient counselling and future research perspectives.
Does expanded carrier screening (ECS) reduce the risk of conceiving an affected child through assisted reproduction with either own or donated gametes?
ABSTRACT Expanded carrier screening (ECS) entails a screening offer for carrier status for multiple recessive disorders simultaneously and allows testing of couples or individuals regardless of ancestry or geographic origin. Although universal ECS—referring to a screening offer for the general population—has generated considerable ethical debate, little attention has been given to the ethics of preconception ECS for patients applying for assisted reproduction using their own gametes. There are several reasons why it is time for a systematic reflection on this practice. Firstly, various European fertility clinics already offer preconception ECS on a routine basis, and others are considering such a screening offer. Professionals involved in assisted reproduction have indicated a need for ethical guidance for ECS. Secondly, it is expected that patients seeking assisted reproduction will be particularly interested in preconception ECS, as they are already undertaking the physical, emotional and economic burdens of such reproduction. Thirdly, an offer of preconception ECS to patients seeking assisted reproduction raises particular ethical questions that do not arise in the context of universal ECS: the professional’s involvement in the conception implies that both parental and professional responsibilities should be taken into account. This paper reflects on and provides ethical guidance for a responsible implementation of preconception ECS to patients seeking assisted reproduction using their own gametes by assessing the proportionality of such a screening offer: do the possible benefits clearly outweigh the possible harms and disadvantages? If so, for what kinds of disorders and under what conditions?