Cigarette smoking cannot fully explain the epidemiologic characteristics of lung cancer in Taiwanese women, who smoke rarely but have lung cancer relatively often. In a previous study, the authors suspected that exposure to fumes from cooking oils was an important risk factor for lung cancer in Taiwanese women nonsmokers in the Republic of China. In a new case-control study conducted in 1993–1996, they further explored the association of oil fumes with lung cancer in women. Two sets of controls were used concurrently. The subjects were 131 nonsmoking incident cases with newly diagnosed and histologically confirmed primary carcinoma of the lung, 252 hospital controls hospitalized for causes unrelated to diseases of smoking, and 262 community controls; all controls were women nonsmokers matched by age and date of interview. Details on cooking conditions and habits were collected, in addition to other epidemiologic data. Lung cancer risk increased with the number of meals per day to about threefold for women who cooked these meals each day. The risk was also greater if women usually waited until fumes were emitted from the cooking oil before they began cooking (adjusted odds ratios = 2.0–2.6) and if they did not use a fume extractor (adjusted odds ratios = 3.2–12.2). These results suggest that a proportion of lung cancer may be attributable to the habit of waiting until the cooking oil has been heated to a high temperature before cooking the food. Am J EpidemioI2000;151:140–7.
Abstract Due to its high proliferation capacity and rapid intracranial spread, glioblastoma (GBM) has become one of the least curable malignant cancers. Recently, the competing endogenous RNAs (ceRNAs) hypothesis has become a focus in the researches of molecular biological mechanisms of cancer occurrence and progression. However, there is a lack of correlation studies on GBM, as well as a lack of comprehensive analyses of GBM molecular mechanisms based on high‐throughput sequencing and large‐scale sample sizes. We obtained RNA‐seq data from The Cancer Genome Atlas (TCGA) and Genotype‐Tissue Expression (GTEx) databases. Further, differentially expressed mRNAs were identified from normal brain tissue and GBM tissue. The similarities between the mRNA modules with clinical traits were subjected to weighted correlation network analysis (WGCNA). With the mRNAs from clinical‐related modules, a survival model was constructed by univariate and multivariate Cox proportional hazard regression analyses. Thereafter, we carried out Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, we predicted interactions between lncRNAs, miRNAs and mRNAs by TargetScan, miRDB, miRTarBase and starBase. We identified 2 lncRNAs (NORAD, XIST), 5 miRNAs (hsa‐miR‐3613, hsa‐miR‐371, hsa‐miR‐373, hsa‐miR‐32, hsa‐miR‐92) and 2 mRNAs (LYZ, PIK3AP1) for the construction of a ceRNA network, which might act as a prognostic biomarker of GBM. Combined with previous studies and our enrichment analysis results, we hypothesized that this ceRNA network affects immune activities and tumour microenvironment variations. Our research provides novel aspects to study GBM development and treatment.
Abstract It is well known that noncoding RNAs (ncRNAs) cannot encode proteins, but they can play important regulatory roles in tumors by combining with proteins, RNAs, and DNAs. As more and more studies reveal the important roles and underlying mechanisms of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in cancer, their huge application potential in cancer therapy cannot be ignored. For example, lncRNAs can be involved in tumor‐related signal transduction pathways, cell cycle control, DNA damage, epigenetic regulation, and microRNA control. A group of studies confirmed that abnormal expression of lncRNAs can affect cancer progression. Furthermore, as covalently closed continuous circular ncRNAs, many recent studies have shown that circRNAs have regulatory effects and other important biological significances in cancer. Interestingly, circRNAs were found to have translational functions. This has greatly attracted people's attention to circRNAs research. In this review, we introduce the important roles of lncRNAs and circRNAs in some representative cancers, respectively. Furthermore, we focus on the biological functions and important clinical therapeutic implications of lnRNAs and circRNAs in neuroblastoma. Our review also focuses on providing rationale and relevant references for novel biomarkers for neuroblastoma diagnosis, prognosis, and treatment.
Wilms tumor is the most frequent renal malignancy in children. YTHDF1 is associated with the development of several kinds of cancers, yet whether common variants of the YTHDF1 gene influence Wilms tumor risk is unknown. We present, here, a hospital-based case-control study specifically designed to investigate the role of YTHDF1 genetic variants on Wilms tumor. We successfully genotyped samples of 408 Wilms tumor cases and 1198 controls which were collected from five hospitals across China. The unconditional logistic regression was adopted to analyze the contributions of YTHDF1 gene single nucleotide polymorphisms (SNPs) to the risk of Wilms tumor. The odds ratio (OR) and 95% confidence interval (CI) were generated to evaluate the conferring risk of YTHDF1 gene SNPs (rs6011668 C>T, rs6090311 A>G). Neither of the two SNPs could contribute to the risk of Wilms tumor. A negative association was also detected in the combined effects of protective genotypes on Wilms tumor risk. The stratification analysis revealed that compared with those with CC genotype, rs6011668 CT/TT genotype was associated with increased Wilms tumor risk in those ≤18 months (OR = 1.54, 95% CI = 1.02-2.30, p = 0.038), and with decreased Wilms tumor risk in those >18 months (OR = 0.70, 95% CI = 0.50-0.97, p = 0.034). Our present work sheds some light on the potential role of YTHDF1 gene polymorphisms on Wilms tumor risk.
miRNAs have been widely investigated in terms of cell proliferation and differentiation. However, little is known about their effects on bird growth. Here we characterized the promoter of miR-206 in chicken and found that the preferable promoter was located in 1200 bp upstream of pri-miR-206. In this region, many key transcription factors, including MyoD, c-Myb, CEBPα/β, AP-4, RAP1, Brn2, GATA-1/2/3, E47, Sn, upstream stimulatory factor (USF) and CdxA, were predicted to bind and interact with miR-206 promoter. Overexpression of MyoD sharply increased miR-206 expression in both fibroblast and myoblast cells, and also the regulation in the myoblast cells was much stronger, indicating that miR-206 was regulated by MyoD combined with other muscle specific transcriptional factors. Aiming to further investigate the relationship between miR-206 mutation and transcriptional expression, total of 23 SNPs were identified in the two distinct bird lines by sequencing. Interestingly, the motif bound by MyoD was individually destroyed by G-to-C mutation located at 419 bp upstream of miR-206 precursor. Co-transfecting MyoD and miR-206 promoter in DF-1 cells, the luciferase activity of promoter containing homozygous GG types was significantly higher than CC ones (p < 0.05). Thus, this mutation caused low expression of miR-206. Consistently, eight variants including G-419C mutation exhibited a great effect on birthweight through maker-trait association analysis in F2 population (p < 0.05). Additionally, the regulation of miR-206 on embryo muscle mass mainly by increasing MyoG and muscle creatine kinase (MCK) expression (p < 0.05) with little change in MyoD, TMEM8C and myosin heavy chain (MHC). In conclusion, our findings provide a novel mutation destroying the promoter activity of miR-206 in birds and shed new light to understand the regulation mechanism of miR-206 on the embryonic muscle growth.
Recent studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in the tumorigenesis and proliferation of human cancer. Several polymorphisms of lncRNAs have been found to be involved in the risk of neuroblastoma (NB). However, studies on the relationship between polymorphisms in lncRNA exons and NB are infrequent. We evaluated the association between rs11752942 A > G polymorphism in lnc-RNA-uc003opf.1 exon and neuroblastoma susceptibility by performing a hospital-based study with 275 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) assessed by using logistic regression models were used to determine the strength of the association. We found that the rs11752942 G allele is significantly associated with decreased neuroblastoma risk (AG vs. AA: adjusted OR = 0.72, 95% CI = 0.53–0.98, P = 0.038; and AG/GG vs. AA: adjusted OR = 0.74, 95% CI = 0.55–0.99, P = 0.045) after adjusting for age and gender. This association was more prominent in females, subjects with tumor in the mediastinum or early-stage. Furthermore, the expression quantitative trait locus analysis indicated that rs11752942 G was associated with decreased expression of its neighboring gene LRFN2 mRNA. These results indicate that lncRNA-uc003opf.1 may be a novel potentially functional lncRNA that may be used as a predictive marker, for it might contribute to decreased neuroblastoma risk.
Emerging epidemiological researches have been performed to assess the association of ESR1 PvuII (rs2234693 T>C) polymorphism with the risk of cancer, yet with conflicting conclusions.Therefore, this updated meta-analysis was performed to make a more accurate evaluation of such relationship.We adopted EMBASE, PubMed, CNKI, and WANFANG database to search relevant literature before January 2018.Odds ratios (ORs) and 95% confidence intervals (CIs) were employed to estimate the relationship strengths.In final, 80 studies (69 publications) involving 26428 cases and 43381 controls were enrolled.Our results failed to provide significant association between overall cancer risk and PvuII polymorphism under homozygous (TT vs. CC) and heterozygous (TT vs. CT) models.Statistically significant relationship was only observed for PvuII polymorphism in allele model T vs. C (OR=0.95, 95% CI=0.91-0.99).Stratification analysis by cancer type suggested that T genotype significantly decreased prostate cancer risk (TT vs. CC: OR=0.79, 95% CI=0.66-0.94;T vs. C: OR=0.89, 95% CI=0.82-0.98),Leiomyoma risk (T vs. C: OR=0.82, 95% CI=0.68-0.98),and HCC risk (TT vs. CC: OR=0.45, 95% CI=0.28-0.71;T vs. C: OR=0.67, 95% CI=0.47-0.95).Furthermore, significantly decreased risk was also found for Africans, population-based and hospital-based studies in the stratified analyses.These results suggest that ESR1 PvuII (rs2234693 T>C) polymorphism may only have little impact on cancer susceptibility.In the future, large-scale epidemical studies are warranted to verify these results.
Abstract Tenascin-C (TNC), a very large multimeric glycoprotein, is overexpressed in human glioblastomas, leading to a highly motile and invasive phenotype of glioma cells. However, the regulation of TNC expression in glioma has remained unclear until now. Our data suggest that interleukin-33 (IL-33) may promote the accumulation of TNC protein by autocrine or paracrine modes of action in glioma. In the present study, the expression levels of TNC, IL-33, and ST2 were measured in glioma tissue specimens, and the impact of altered IL-33 expression on TNC was investigated in vitro and in vivo . In contrast with control treatment, IL-33 treatment increased TNC expression, and knockdown of IL-33 attenuated TNC expression in glioma cells. Furthermore, IL-33 induced the activation of nuclear factor κB (NF-κB) and increased the expression of TNC in U251 cells. In addition, blockage of the IL-33-ST2-NFκB pathway resulted in downregulation of TNC production. IL-33 promoted glioma cell invasion by stimulating the secretion of TNC. Similarly, knockdown of TNC inhibited the invasiveness of glioma cells. These findings provide a novel perspective on the role of the IL-33/NF-κB/TNC signalling pathway in supporting cancer progression. Thus, targeting the IL-33/NF-κB/TNC signalling pathway may be a useful therapeutic approach in glioma.
Abstract N ‐acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4‐acetylcytidine (ac4C) “writer” enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10‐related molecular mechanisms in various cancers are not fully understood. In this review, we first describe the cellular localization of NAT10 and then summarize its numerous biological functions. NAT10 is involved in various biological processes by mediating the acetylation of different proteins and RNAs. These biological functions are also associated with cancer progression and patient prognosis. We also review the mechanisms by which NAT10 plays roles in various cancer types. NAT10 can affect tumor cell proliferation, metastasis, and stress tolerance through its acetyltransferase properties. Further research into NAT10 functions and expression regulation in tumors will help explore its future potential in cancer diagnosis, treatment, and prognosis.