Abstract Background Aseptic necrosis of the femoral head (ANFH) has a high incidence in the community and causes substantial problems with health as well as economic and social stress. Core decompression is the most commonly used treatment for early ANFH. Although many studies have reported on the efficacy of femoral head core decompression surgery for ANFH, there are still some shortcomings in assessing the severity of femoral head necrosis, the location distribution, and changes in necrotic lesions before and after surgery. Magnetic resonance imaging (MRI) and equivalent sphere model analysis were used to further clarify the clinical efficacy of percutaneous multiple small-diameter drilling core decompression in patients with ANFH. Methods From July 2013 to November 2016, 24 patients (32 cases of the hip joint) with ANFH who underwent percutaneous multiple small-diameter drilling core decompression were selected, and a retrospective analysis was conducted. MRI as well as VAS, OHS-C, and HHS scores were used to evaluate joint function in all patients before and 6, 12, and 24 months after the operation. Results Twenty-four months after the operation, 10 hips were amputated. The survival rates of alcoholic femoral head necrosis (AFNH), idiopathic femoral head necrosis (IFHN), and steroid-induced femoral head necrosis (SIFHN) patients at 24 months were 100%, 85.7% (− 2 hips), and 0.0% (− 8 hips), respectively. The MRI and equivalent sphere analysis results revealed that the anterior superior medial quadrant was the area most prone to osteonecrosis, and the posterior superior medial quadrant was the area second most prone to necrosis. After the operation, the average percentage of the AFHN necrosis area in the total volume of the femoral head decreased from 14.5 to 10.3%, and the average percentage of the IFHN necrosis area decreased from 16.3 to 9.2%; however, the average percentage of the necrosis area for SIFHN increased from 30.4 to 33.1%. Conclusion Percutaneous multiple small-diameter drilling core decompression significantly reduced the lesion volume for AFHN and IFHN, but the effect on SIFHN was not good.
Abstract Maternal exposure to dexamethasone can cause developmental toxicity of long bones in offspring. However, the effect of dexamethasone on the trans-differentiation of growth plate chondrocytes into osteoblasts and its role in bone dysplasia of fetuses caused by prenatal dexamethasone exposure (PDE) remains unclear. In this study, pregnant mice were treated with different doses, stages, and courses of dexamethasone according to clinical practice to reveal the phenomenon. Further, growth plate chondrocytes were treated with dexamethasone in vitro to clarify the phenomenon and mechanism. The results showed that PDE caused dysplasia of fetal long bones in female and male mice, accompanied by the delayed formation of the primary ossification center and the widening hypertrophic zone of growth plate cartilage. Meanwhile, PDE increased the number of hypertrophic chondrocytes at growth plate cartilage and decreased the number of osteoblasts at the primary ossification center. Moreover, PDE significantly decreased the expression of osteogenic transcription factor Runx2 but increased the expression of hypertrophic chondrocytes marker Col10. These above phenomena were more significant in the high dose, early stage, and double courses of dexamethasone exposure groups, and the male fetal mice showed more obvious than the female fetal mice. In vitro , dexamethasone significantly inhibited the trans-differentiation of growth plate chondrocytes into osteoblasts, accompanied by a decrease in Runx2 expression and an increase in Col10 expression. In conclusion, this study revealed the phenomenon and mechanism of fetal bone dysplasia caused by PDE from the new perspective of trans-differentiation disorder of growth plate chondrocytes to osteoblasts.
Abstract Purpose: To investigated the early incidence of deep venous thrombosis (DVT) and its risk factors after knee arthroscopic surgery in patients with anticoagulant and non-anticoagulant. Methods: 272 patients were reviewed who have undergone knee arthroscopic surgery in our hospital from January 2018 to October 2019. Color doppler ultrasound was performed for every patient at 24h preoperatively and three days after operation. On the first day after surgery, low molecular weight heparin (LMWH) was randomly administered to some patients and not in others. The following factors were recorded: gender, age, body mass index (BMI), preoperative platelet and D-dimer level, D-dimer level three days after surgery, anesthetic technique, tourniquet time, whether to use LMWH after operation, and type of surgical procedures. Chi-square test or Student t test was used to preliminarily screen out suspected risk factors. Then, multiple logistic regression analysis was utilized to further determine the risk factors of DVT after knee arthroscopic surgery. Results: The incidence of DVT in the postoperative anticoagulant group was 7.5%, and 7.4% in the non-anticoagulant group. An increased incidence was found among higher D-dimer level postoperatively. There was no significant difference in the incidence of DVT between use of LMWH and non-use of LMWH in three days after surgery. Conclusion: The early incidence of DVT in the group of patients without LMWH was 7.4%. The incidence of DVT in patients with knee arthroscopy surgery could not be reduced by using LMWH within three days, and high D-dimer level was a risk factor for DVT after knee arthroscopic surgery.
Our previous study reported that prenatal caffeine exposure (PCE) could induce chondrodysplasia and increase the susceptibility to osteoarthritis in offspring rats. However, the potential mechanisms and initiating factors remain unknown. This study aims to investigate whether 11β-HSD2, a glucocorticoid-metabolizing enzyme, is involved in the susceptibility of osteoarthritis induced by PCE and to further explore its potential mechanisms and initiating factors. Firstly, we found that PCE reduced cartilage matrix synthesis (aggrecan/Col2a1 expression) in male adult offspring rats and exhibited an osteoarthritis phenotype following chronic stress, which was associated with persistently reduced H3K9ac and H3K27ac levels at the promoter of 11β-HSD2 as well as its expression in the cartilage from fetus to adulthood. The expression of 11β-HSD2, aggrecan and Col2a1 were all decreased by corticosterone in the fetal chondrocytes, while overexpression of 11β-HSD2 could partially alleviate the decrease of matrix synthesis induced by corticosterone in vitro. Furthermore, the glucocorticoid receptor (GR) activated by glucocorticoids directly bonded to the promoter region of 11β-HSD2 to inhibit its expression. Meanwhile, the activated GR reduced the H3K9ac and H3K27ac levels of 11β-HSD2 by recruiting HDAC4 and promoting GR-HDAC4 protein interaction to inhibit the 11β-HSD2 expression. Moreover, caffeine could reduce the expression of 11β-HSD2 by inhibiting the cAMP/PKA signaling pathway but without reducing the H3K9ac and H3K27ac levels of 11β-HSD2, thereby synergistically enhancing the corticosterone effect. In conclusion, the persistently reduced H3K9ac and H3K27ac levels of 11β-HSD2 from fetus to adulthood mediated the inhibition of cartilage matrix synthesis and the increased susceptibility to osteoarthritis. This epigenetic programming change in utero was induced by glucocorticoids with synergistic effect of caffeine.
Background/Aims: Prenatal ethanol exposure (PEE) could induce intrauterine programming of hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolism, resulting in intrauterine growth retardation and susceptibility to adult hypercholesterolemia in offspring. This study aimed to analyse the effects and interactions of PEE, a post-weaning high-fat diet (HFD) and gender on the occurrence of adult hypercholesterolemia in offspring rats. Methods: Wistar female rats were treated with ethanol (4 g/kg.d) at gestational days 11-20. The offspring were given a normal diet or HFD after weaning, and the blood cholesterol metabolism phenotype and expression of hepatic cholesterol metabolism related genes were detected in 24-week-old offspring. Furthermore, the interactions among PEE, HFD, and gender on hypercholesterolemia occurrence were analysed. Results: PEE increased the serum total cholesterol (TCH) and low-density lipoprotein-cholesterol (LDL-C) levels and decreased the serum high-density lipoprotein-cholesterol (HDL-C) level in adult offspring rats; the changes in female offspring were greater than those in males. At the same time, the mRNA expression levels of hepatic cholesterol metabolic enzymes (apolipoprotein B (ApoB) and 7α-hydroxylase (CYP7A1))—were increased, while the mRNA expression levels of the scavenger receptor B1 (SR-B1) and LDL receptor (LDLR) were decreased. Furthermore, a three-way ANOVA showed there were interactions among PEE, post-weaning HFD and gender. For PEE offspring, a post-weaning HFD aggravated the elevated hepatic ApoB and CYP7A1 expression and reduced SR-B1 and LDLR expression; the changes in hepatic SR-B1 and CYP7A1 expression were greater in female HFD rats than in males. Conclusion: Our findings suggest that a post-weaning HFD could aggravate offspring hypercholesterolemia caused by PEE and that this mechanism might be associated with hepatic cholesterol metabolic disorders that are aggravated by a post-weaning HFD; hepatic cholesterol metabolism was more sensitive to neuroendocrine metabolic alterations by PEE and a post-weaning HFD in the female offspring than in the male offspring.
It is often technically demanding to find and remove loose bodies in several difficult locations like the popliteus hiatus and posterior compartment arthroscopically. We aim to present the technical aspects of establishing some special accessory portals to achieve arthroscopic removal of the loose bodies in these locations. From September 2010 to July 2017, 76 patients underwent removal of loose bodies in the popliteus hiatus and posterior compartment arthroscopically using some special accessory portal techniques. An auxiliary extreme lateral approach was established to remove loose bodies in the popliteus hiatus; a double-posteromedial portal was applied to handle loose body removal in the posteromedial compartment, and the posterior trans-septal portal was needed for loose body removal in the posterolateral compartment. Functional outcomes were evaluated using Lysholm score, Tegner score, and International Knee Documentation Committee (IKDC) score, respectively. Seventy-six patients (24 males and 52 females, average age 54.9 ± 11.4) finished the follow-up visit at 3 weeks after surgery. There was no statistically significant difference among the three groups in demographics. All the patients were performed following the special technique. According to a comparison of knee joint scores before and after surgery, all the patients obtained good prognosis using some special accessory portals in loose body removal. With the help of the above accessory portals under endoscopic visualization, loose bodies in the popliteus hiatus and posterior compartment of the knee can be safely and effectively removed.