Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1′-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration–time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.
Isochlorogenic acid A is widely present in fruits, vegetables and herbal medicines, and is characterized by anti-inflammatory, hepatoprotective and antiviral properties. However, little is known about its metabolic fate and pharmacokinetic properties. This study is thus designed to investigate the metabolic fate of isochlorogenic acid A. An analytical method based on high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF MS) was established to characterize the metabolites of isochlorogenic acid A in the plasma, urine and feces of rats. A total of 32 metabolites were identified. The metabolic pathways mainly include hydrolyzation, dehydroxylation, hydrogenation and conjugation with methyl, glucuronic acid, glycine, sulfate, glutathione and cysteine. Moreover, the pharmacokinetic profiles of all the circulating metabolites were investigated. M11 resulting from hydrolyzation, dehydroxylation and hydrogenation was the dominant circulating metabolite after the intragastric administration of isochlorogenic acid A. The results obtained will be useful for further study of elucidating potential bioactive metabolites which can provide better explanation of the pharmacological and/or toxicological effects of this compound.
Drug metabolism studies, including in vivo and in vitro metabolism studies, are significant in the design of candidate compounds and screening of lead compounds at drug discovery/development stages. Compared with in vivo metabolism studies, in vitro metabolism studies have the advantages of rapidity, simplicity, without consumption of large amounts of samples and animals. Moreover, it is convenient for researchers to observe the selective interaction between compound and target. Therefore, in vitro metabolism studies are appropriate for high throughput screening of compounds which are lack of metabolism information and have been widely used during drug discovery stages. This article briefly introduced the application of in vitro drug metabolism studies based on the metabolic stability, reaction phenotyping and metabolic drug-drug interactions, aiming to raise valuable evaluation strategies for innovative drug discovery in China.
Abstract Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo ; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human.
Proxalutamide is a novel drug for the treatment of prostate cancer. However, to date, there are almost no reports on the pharmacokinetics of proxalutamide in vivo. This study developed a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine the concentrations of proxalutamide in biological samples for pharmacokinetic studies.Chromatographic separation was achieved on a Kromasil 100-5C8 column followed by gradient elution using a Shimadzu HPLC system. MS was performed in positive ion electrospray ionization mode using a SCIEX API 4000 triple quadrupole system. A simple and rapid one-step protein precipitation method was used for sample processing, and a low sample volume of 10 μL was used for processing and analysis.The method was validated to show good selectivity, sensitivity, precision, and accuracy. Good linearity (r2 > 0.99) was observed for rat plasma (range: 2-5000 ng/mL) and rat tissue homogenates (range: 2-2000 ng/mL). The extraction recovery was above 98%, and no significant matrix effect was observed. This method was successfully applied to investigate the pharmacokinetics and tissue distribution of proxalutamide in rats.A rapid and sensitive LC/MS/MS method was developed and validated to determine the quantity of proxalutamide in rat plasma and tissue homogenates and to further study the pharmacokinetic parameters of proxalutamide in a rat model. The results showed that proxalutamide had good oral bioavailability and wide tissue distribution in vivo.