Abstract Resistance of Acinetobacter baumannii to multiple clinically important antimicrobials has increased to very high rates in Greece, rendering most of them obsolete. The aim of this study was to determine the molecular epidemiology and susceptibilities of A. baumannii isolates collected from different hospitals across Greece. Single-patient A. baumannii strains isolated from blood cultures ( n = 271), from 19 hospitals, in a 6-month period (November 2020–April 2021) were subjected to minimum inhibitory concentration determination and molecular testing for carbapenemase, 16S rRNA methyltransferase and mcr gene detection and epidemiological evaluation. 98.9% of all isolates produced carbapenemase OXA-23. The vast majority (91.8%) of OXA-23 producers harbored the armA and were assigned mainly (94.3%) to sequence group G1, corresponding to IC II. Apramycin (EBL-1003) was the most active agent inhibiting 100% of the isolates at ≤16 mg/L, followed by cefiderocol which was active against at least 86% of them. Minocycline, colistin and ampicillin-sulbactam exhibited only sparse activity (S <19%), while eravacycline was 8- and 2-fold more active than minocycline and tigecycline respectively, by comparison of their MIC 50 / 90 values. OXA-23-ArmA producing A. baumannii of international clone II appears to be the prevailing epidemiological type of this organism in Greece. Cefiderocol could provide a useful alternative for difficult to treat Gram-negative infections, while apramycin (EBL-1003), the structurally unique aminoglycoside currently in clinical development, may represent a highly promising agent against multi-drug resistant A. baumanni infections, due to its high susceptibility rates and low toxicity.
Abstract Background Infections caused by KPC-producing Klebsiella pneumoniae (Kp) are associated with high mortality. Therefore, new treatment options are urgently required. Objectives To assess the outcomes and predictors of mortality in patients with KPC- or OXA-48-Kp infections treated with ceftazidime/avibactam with an emphasis on KPC-Kp bloodstream infections (BSIs). Methods A multicentre prospective observational study was conducted between January 2018 and March 2019. Patients with KPC- or OXA-48-Kp infections treated with ceftazidime/avibactam were included in the analysis. The subgroup of patients with KPC-Kp BSIs treated with ceftazidime/avibactam was matched by propensity score with a cohort of patients whose KPC-Kp BSIs had been treated with agents other than ceftazidime/avibactam with in vitro activity. Results One hundred and forty-seven patients were identified; 140 were infected with KPC producers and 7 with OXA-48 producers. For targeted therapy, 68 (46.3%) patients received monotherapy with ceftazidime/avibactam and 79 (53.7%) patients received ceftazidime/avibactam in combination with at least another active agent. The 14 and 28 day mortality rates were 9% and 20%, respectively. The 28 day mortality among the 71 patients with KPC-Kp BSIs treated with ceftazidime/avibactam was significantly lower than that observed in the 71 matched patients, whose KPC-Kp BSIs had been treated with agents other than ceftazidime/avibactam (18.3% versus 40.8%; P = 0.005). In the Cox proportional hazards model, ultimately fatal disease, rapidly fatal disease and Charlson comorbidity index ≥2 were independent predictors of death, whereas treatment with ceftazidime/avibactam-containing regimens was the only independent predictor of survival. Conclusions Ceftazidime/avibactam appears to be an effective treatment against serious infections caused by KPC-Kp.
Introduction The emergence of carbapenemase resistant Gram-negative is designated as an ‘urgent’ priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome.Areas covered This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel β-lactam/β-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed.Expert opinion Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-β-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.
Background/Objectives: The incidence of Ceftazidime/Avibactam (CZA)-resistant Klebsiella pneumoniae isolate co-producing Klebsiella pneumoniae carbapenemase 2 (KPC-2) and Vietnamese extended-spectrum β-lactamase 25 (VEB-25) has been on the rise in Greece over the past five years. This study investigates the isolation of ST323 K. pneumoniae isolates co-resistant to CZA and cefiderocol (FDC) from colonized and infected patients in a single hospital in Athens. Methods: CZA-resistant K. pneumoniae strains were isolated from 5 ICU patients from 27 December 2023 to 22 January 2024. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing of the isolates was carried out to identify the acquired resistance genes and mutations that were associated with CZA and FDC resistance. Results: The K. pneumoniae isolates belonged to ST323 and harbored blaKPC-2 and blaVEB-25. The isolates had a minimum inhibitory concentration (MIC) of >256 mg/L for CZA and 32 mg/L for FDC, due to the disrupted catecholate siderophore receptor Fiu. blaVEB-25 was located on an IncC non-conjugative plasmid and on a ~14 kb multidrug resistance (MDR) region comprising 15 further acquired resistance genes. Transformation studies showed that the blaVEB-25-carrying plasmid provided resistance to most of the β-lactams tested, including CZA. The isolates remained susceptible to carbapenems, imipenem/relebactam, and meropenem/vaborbactam. The plasmid harbored the citrate-dependent iron (III) uptake system (fecIRABCDE), which increased the MIC of FDC from ≤0.08 mg/L to 2 mg/L. Conclusions: The blaVEB-25 gene was associated with IncC plasmids which are important contributors to the spread of key antibiotic resistance genes. Strict infection control measures must be elaborated upon to prevent the spread of extensively drug-resistant organisms such as those described here.
We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents against MDR non-MBL Pseudomonas aeruginosa isolates collected from nine Greek hospitals and we assessed the potential synergistic interaction between ceftolozane/tazobactam and amikacin.A total of 160 non-MBL P. aeruginosa isolates collected in 2016 were tested for susceptibility to ceftolozane/tazobactam and seven comparator agents including ceftazidime/avibactam. Time-kill assays were performed for synergy testing using ceftolozane/tazobactam 60 or 7.5 mg/L, corresponding to the peak and trough concentrations of a 1.5 g q8h dose, respectively, in combination with 69 mg/L amikacin, corresponding to the free peak plasma concentration. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent.Overall, ceftolozane/tazobactam inhibited 64.4% of the P. aeruginosa strains at ≤4 mg/L. Colistin was the most active agent (MIC50/90, 0.5/2 mg/L; 96.3% susceptible) followed by ceftazidime/avibactam (MIC50/90, 4/16 mg/L; 80.6% susceptible). GES-type enzymes were predominantly responsible for ceftolozane/tazobactam resistance; 81.6% of the non-producers were susceptible. MICs for the P. aeruginosa isolates selected for synergy testing were 2-32 mg/L ceftolozane/tazobactam and 2-128 mg/L amikacin. The combination of ceftolozane/tazobactam with amikacin was synergistic against 85.0% of all the isolates tested and against 75.0% of the GES producers. No antagonistic interactions were observed.Ceftolozane/tazobactam demonstrated good in vitro activity against MDR/XDR P. aeruginosa clinical isolates, including strains with co-resistance to other antipseudomonal drugs. In combination with amikacin, a synergistic interaction at 24 h was observed against 85.0% of P. aeruginosa strains tested, including isolates with ceftolozane/tazobactam MICs of 32 mg/L or GES producers.
Treatment of infections caused by carbapenemase-producing Klebsiella pneumoniae (CPKP) frequently involves combination therapy with various antimicrobial agents in the hope of achieving synergistic effects. Routine laboratory antimicrobial synergy testing is a service that is currently unavailable owing to the laborious nature of the reference time–kill assay (TKA) as well as the widely used chequerboard method. In this study, we explored whether easier methods, based on the Etest technique, might offer a suitable alternative. In vitro interactions of tigecycline combination with colistin, gentamicin, fosfomycin or meropenem against 26 CPKP isolates were evaluated employing the TKA, chequerboard method and three Etest methodologies (the MIC/MIC ratio, the cross formation and the agar/Etest method). Rates of consequent synergy and concordance of the studied methods were determined. All antimicrobial combinations demonstrated some degree of synergy against the CPKP isolates tested. No antagonism was observed for any of the combinations. All methods showed poor synergy concordance with the TKA, producing non-significant kappa (κ) results. Etest methods (MIC/MIC ratio and agar/Etest) exhibited fair agreement (κ = 0.29 and 0.38, respectively) with the chequerboard method. There is a poor correlation between synergy testing methods of tigecycline combinations, which may be associated with their different endpoints. To elucidate method comparability and reliability, their correlation with clinical outcomes appears important.
From September to October 2019, seven patients colonised or infected with a ceftazidime-avibactam (CZA)-resistant Klebsiella pneumoniae carbapenemase (KPC)-2-producing K. pneumoniae were detected in two intensive care units of a Greek general hospital. The outbreak strain was sequence type (ST)147 and co-produced KPC-2 and the novel plasmid-borne Vietnamese extended-spectrum β-lactamase (VEB)-25 harbouring a K234R substitution associated with CZA resistance. Epidemiological investigations revealed that the resistance was probably acquired by horizontal transmission independently from previous CZA exposure.
Background and aim A multicentre nationwide surveillance study was conducted in Greek hospitals to evaluate epidemiology of carbapenemase-producing Klebsiella pneumoniae clinical isolates, and their susceptibilities to last-line antibiotics. Methods: Minimum inhibitory concentrations (MICs) were evaluated by Etest, colistin MICs were also evaluated by broth microdilution SensiTest (now known as ComASP) Colistin. Carbapenemase genes were detected by PCR. Clonal relatedness was assessed by PFGE. Isolates were prospectively collected between November 2014 and April 2016, from 15 hospitals. Results : Among 394 isolates, K. pneumoniae carbepenemase (KPC) remained the most prevalent carbapenemase (66.5%). NDM was the second most prevalent (13.7%), identified in 12 hospitals, followed by VIM (8.6%). OXA-48- and double carbapenemase-producers remained rare (3.6%, 6.3%, respectively). Carbapenemase-producing K. pneumoniae isolates showed high resistance to last-line antibiotics. Gentamicin and colistin were the most active in vitro with 61.9% and 59.6% of the isolates to be inhibited at ≤ 2mg/L, followed by fosfomycin (susceptibility (S): 58.4%) and tigecycline (S: 51.5%). Ceftazidime/avibactam inhibited 99.6% of KPC and 100% of OXA-48-like-producing isolates, while temocillin was active against 58% of KPC isolates at urinary breakpoint of ≤ 32mg/L* and only 2.7% at systemic breakpoint of ≤ 8mg/L. NDM-producing isolates belonged mainly to one clone, whereas KPC, VIM, OXA-48 and double carbapenemase-producers were mainly polyclonal. Conclusions : KPC remains the predominant carbapenemase among K. pneumoniae in Greece, followed by NDM, whereas changing trends of resistance rates to last-line antimicrobials against carbapenemase-producing K. pneumoniae with the exception of ceftazidime/avibactam mandates continuing surveillance to support clinical practice.