Abstract Annexins are phospholipid binding proteins that somehow translocate from the inner leaflet of the plasma membrane to the outer leaflet. For example, Annexin A2 is known to localise to the outer leaflet of the plasma membrane (cell surface) where it is involved in plasminogen activation leading to fibrinolysis and cell migration, among other functions. Despite having well described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that phospholipid flipping activity is crucial for the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (anoctamin-6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid flipping.
Fusion of human immunodeficiency virus (HIV-1) with target cells is mediated by the gp41 transmembrane envelope protein. The loop region within gp41 contains 2 crucial cysteines that play an unknown role in HIV-cell fusion. On the basis of cell-cell fusion assay, using human T-cell lines [Jurkat E6-1 and Jurkat HXBc2(4)], and virus-cell fusion assay, using fully infectious HIV-1 HXBc2 virus and TZM-bl human cell line, we provide evidence that the oxidation state of the disulfide bond within a loop domain peptide determines its activity. The oxidized (closed) form inhibits fusion, while the reduced (opened) form enhances hemifusion. These opposite activities reach 60% difference in viral fusion. Both forms of the loop domain interact with gp41: the opened form enhances gp41 folding into a bundle, whereas the closed form inhibits this folding. Therefore, the transformation of the cysteines from a reduced to an oxidized state enables the loop to convert from opened to closed conformations, which assists gp41 to fold and induces hemifusion. The significant conservation of the loop region within many envelope proteins suggests a general mechanism, which is exploited by viruses to enhance entry into their host cells.—Ashkenazi, A., Viard, M., Wexler-Cohen, Y., Blumenthal, R., Shai, Y. Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIV-1 gp41. FASEB J. 25, 2156-2166 (2011). www.fasebj.org
VCP/p97 is an essential multifunctional protein implicated in a plethora of intracellular quality control systems, and abnormal function of VCP is the underlying cause of several neurodegenerative disorders. We reported that VCP regulates the levels of the macroautophagy/autophagy-inducing lipid phosphatidylinositol-3-phosphate (PtdIns3P) by modulating the activity of the BECN1 (beclin 1)-containing phosphatidylinositol 3-kinase (PtdIns3K) complex. VCP stimulates the deubiquitinase activity of ATXN3 (ataxin 3) to stabilize BECN1 protein levels and also interacts with and promotes the assembly and kinase activity of the PtdIns3K complex. Acute inhibition of VCP activity impairs autophagy induction, demonstrated by a diminished PtdIns3P production and decreased recruitment of early autophagy markers WIPI2 and ATG16L1. Thus, VCP promotes autophagosome biogenesis, in addition to its previously described role in autophagosome maturation.
Despite the central role of T cells in tumor immunity, attempts to harness their cytotoxic capacity as a therapy have met limited efficacy, partially as a result of the suppressive microenvironment which limits their migration and activation. In contrast, myeloid cells massively infiltrate tumors and are well adapted to survive these harsh conditions. While they are equipped with cell-killing abilities, they often adopt an immunosuppressive phenotype upon migration to tumors. Therefore, the questions of how to modify their activation programming against cancer, and what signaling cascades should be activated in myeloid cells to elicit their cytotoxicity have remained unclear.Here, we found that activation of IgM-induced signaling in myeloid cells results in secretion of lytic granules and massive tumor cell death. These findings open venues for designing novel immunotherapy by equipping monocytes with chimeric receptors that target tumor antigens and consequently, signal through IgM receptor. Nonetheless, we found that myeloid cells do not express the antibody-derived portion used to recognize the tumor antigen due to the induction of an ER stress response. To overcome this limitation, we designed chimeric receptors that are based on the high-affinity FcγRI for IgG. Incubation of macrophages expressing these receptors along with tumor-binding IgG induced massive tumor cell killing and secretion of reactive oxygen species and Granzyme B.Overall, this work highlights the challenges involved in genetically reprogramming the signaling in myeloid cells and provides a framework for endowing myeloid cells with antigen-specific cytotoxicity.
Brain-Targeted Liposomes In article number 2304654, Avi Schroeder and co-workers describe a targeted nanotechnology drug delivery system for treating Parkinson's disease. Brain-targeted liposomes—nanoparticles engineered with transferrin on their surface and carry therapeutic antibodies, cross the blood–brain barrier and effectively treat brain neurodegeneration. This approach reduces pathological alpha-synuclein aggregation and improves motor skills, demonstrating its potential for treating neurodegenerative diseases.