The use of inhibitory checkpoint blockade in the management of glioblastoma has been studied in both preclinical and clinical settings. TIGIT is a novel checkpoint inhibitor recently discovered to play a role in cancer immunity. In this study, we sought to determine the effect of anti-PD-1 and anti-TIGIT combination therapy on survival in a murine glioblastoma (GBM) model, and to elucidate the underlying immune mechanisms. Using mice with intracranial GL261-luc+ tumors, we found that TIGIT expression was upregulated on CD8+ and regulatory T cells (Tregs) in the brain compared to draining cervical lymph nodes (CLN) and spleen. We then demonstrated that treatment using anti-PD-1 and anti-TIGIT dual therapy significantly improved survival compared to control and monotherapy groups. The therapeutic effect was correlated with both increased effector T cell function and downregulation of suppressive Tregs and tumor-infiltrating dendritic cells (TIDCs). Clinically, TIGIT expression on tumor-infiltrating lymphocytes was shown to be elevated in patient GBM samples, suggesting that the TIGIT pathway may be a valuable therapeutic target. Expression of the TIGIT ligand, PVR, further portended a poor survival outcome in patients with low-grade glioma. We conclude that anti-TIGIT is an effective treatment strategy against murine GBM when used in combination with anti-PD-1, improving overall survival via modifications of both the T cell and myeloid compartments. Given evidence of PVR expression on human GBM cells, TIGIT presents as a promising immune therapeutic target in the management of these patients.
The conditionally replicating oncolytic adenovirus Delta24-RGD (Ad) is currently under investigation in clinical trials for glioblastoma, including in combination with temozolomide (TMZ), the standard chemotherapy for this tumor. Previously, we showed that the efficacy of Delta24-RGD in a murine model is primarily dependent on the virus-induced anti-tumor immune response. As observed with most chemotherapies, TMZ has pronounced immune-modulating effects. Here, we studied the combined effects of these treatments in a murine glioma model. In vitro, we observed a synergistic activity between Delta24-RGD and TMZ. In vivo, C57BL/6 mice bearing intracranial GL261 tumors were treated with TMZ for 5 days either prior to intratumoral Delta24-RGD injection (TMZ/Ad) or post virus injection (Ad/TMZ). Notably, the Ad/TMZ regimen led to similar tumoral CD8+ T cell influx as the virus-only treatment, but increased the ability of CD8+ T cells to specifically recognize the tumor cells. This was accompanied by improved survival. The TMZ/Ad regimen also improved survival significantly compared to controls, but not compared to virus alone. In this group, the influx of dendritic cells is impaired, followed by a significantly lower number of tumor-infiltrating CD8+ T cells and no recognition of tumor cells. Depletion of either CD4+ T cells or CD8+ T cells impaired the efficacy of Delta24-RGD, underscoring the role of these cells in therapeutic activity of the virus. Overall, we show that the addition of TMZ to Delta24-RGD treatment leads to a significant increase in survival and that the order of sequence of these treatments affects the CD8+T cell anti-tumor activity.
Background Metastatic melanoma to the brain carries a particularly poor prognosis that may be associated with an attenuated antitumor response in the presence of central nervous system malignancies. Thus, the development of brain metastases could theoretically accelerate cancer progression both locally and systemically. Although dysregulation of checkpoint markers, such as programmed death-ligand 1 (PD-L1), programmed cell death receptor 1 (PD-1), lymphocyte activation gene 3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), have been implicated in immune dysfunction, the exact relationship between these markers and brain tumor-mediated immune suppression remains unclear. Thus, the objective of this study was to explore whether there exists a differential expression of the above checkpoint markers in the intracranial milieu as compared to tumors in the periphery, which may shed light on the mechanism behind the diminished antitumor response. Methods We identified nine patients with extracranial melanomas and matched intracranial metastases. Formalin-fixed, paraffin-embedded slides were stained for PD-L1, PD-1, LAG-3, and TIM-3 via immunohistochemistry. Qualitative analysis was performed to assess the staining of the markers in the neoplastic and lymphocytic cells, which were the two cell lineages in each biopsy. Results Expression of PD-1 and TIM-3 between extracranial and intracranial tumoral sites was conserved. Specifically, in lymphocytes, PD-1 expression was observed in 100% of extracranial and 100% of intracranial slides, whereas TIM-3 expression was seen in 33.33% of extracranial and 33.33% of intracranial slides. Neither marker stained tumor cells, as expected. PD-L1 showed a slight variation in staining between sites, with lymphocyte staining in 100% of extracranial and 88.89% of intracranial slides, and the same percentages per site for tumor cells. The greatest variability was observed in LAG-3 lymphocyte staining, with staining in 77.78% of extracranial and 33.33% of intracranial slides. No LAG-3 staining of tumor cells was noted, as expected. Conclusion Preliminary analysis revealed the conservation of PD-L1, PD-1, LAG-3, and TIM-3 expression intra- and extracranially. This could suggest that these markers are important in maintaining an immunosuppressive phenotype at both sites. Another possibility is that this pattern of expression is associated with patients who develop brain metastasis, as this was the only subset of patients included in this study. Interestingly, LAG-3 staining of lymphocytes appeared more prominent in extracranial over intracranial tumors. Future studies should include more samples to draw out potential patterns masked by the small sample size, as well as to compare checkpoint expression in other patient groups, such as those with non-brain metastasis or those with no metastasis at all.
Therapies for liver cancer particularly those including radiation are still inadequate. Inhibiting the stress response machinery is an appealing anti-cancer and radiosensitizing therapeutic strategy. Heat-shock-protein-90 (HSP90) is a molecular chaperone that is a prominent effector of the stress response machinery and is overexpressed in liver cancer cells. HSP90 client proteins include critical components of pathways implicated in liver cancer cell survival and radioresistance. The effects of a novel non-geldanamycin HSP90 inhibitor, ganetespib, combined with radiation were examined on 3 liver cancer cell lines, Hep3b, HepG2 and HUH7, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γH2AX foci kinetics and client protein expression in pathways important for liver cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined ganetespib-radiation treatment on tumor cell proliferation in a HepG2 hind-flank tumor graft model. Nanomolar levels of ganetespib alone exhibited liver cancer cell anti-cancer activity in vitro as shown by decreased clonogenic survival that was associated with increased apoptotic cell death, prominent G2-M arrest and marked changes in PI3K/AKT/mTOR and RAS/MAPK client protein activity. Ganetespib caused a supra-additive radiosensitization in all liver cancer cell lines at low nanomolar doses with enhancement ratios between 1.33-1.78. These results were confirmed in vivo, where the ganetespib-radiation combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in HepG2 tumor grafts. Our data suggest that combined ganetespib-radiation therapy exhibits promising activity against liver cancer cells, which should be investigated in clinical studies.
Background Despite treatment advancements with immunotherapy, our understanding of response relies on tissue-based, static tumor features such as tumor mutation burden (TMB) and programmed death-ligand 1 (PD-L1) expression. These approaches are limited in capturing the plasticity of tumor–immune system interactions under selective pressure of immune checkpoint blockade and predicting therapeutic response and long-term outcomes. Here, we investigate the relationship between serial assessment of peripheral blood cell counts and tumor burden dynamics in the context of an evolving tumor ecosystem during immune checkpoint blockade. Methods Using machine learning, we integrated dynamics in peripheral blood immune cell subsets, including neutrophil-lymphocyte ratio (NLR), from 239 patients with metastatic non-small cell lung cancer (NSCLC) and predicted clinical outcome with immune checkpoint blockade. We then sought to interpret NLR dynamics in the context of transcriptomic and T cell repertoire trajectories for 26 patients with early stage NSCLC who received neoadjuvant immune checkpoint blockade. We further determined the relationship between NLR dynamics, pathologic response and circulating tumor DNA (ctDNA) clearance. Results Integrated dynamics of peripheral blood cell counts, predominantly NLR dynamics and changes in eosinophil levels, predicted clinical outcome, outperforming both TMB and PD-L1 expression. As early changes in NLR were a key predictor of response, we linked NLR dynamics with serial RNA sequencing deconvolution and T cell receptor sequencing to investigate differential tumor microenvironment reshaping during therapy for patients with reduction in peripheral NLR. Reductions in NLR were associated with induction of interferon-γ responses driving the expression of antigen presentation and proinflammatory gene sets coupled with reshaping of the intratumoral T cell repertoire. In addition, NLR dynamics reflected tumor regression assessed by pathological responses and complemented ctDNA kinetics in predicting long-term outcome. Elevated peripheral eosinophil levels during immune checkpoint blockade were correlated with therapeutic response in both metastatic and early stage cohorts. Conclusions Our findings suggest that early dynamics in peripheral blood immune cell subsets reflect changes in the tumor microenvironment and capture antitumor immune responses, ultimately reflecting clinical outcomes with immune checkpoint blockade.
Neuroimmunology and Neuroinflammation is an open access journal, with focuses on neuroimmunology and neuroinflammation research, and coverage extending to other basic and clinical studies related to neuroscience.
AbstractBackground: In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). Methods: An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines. Differential protein expression was explored by comparing the proteomes of the breast cancer cells before and after co-culture with activated T lymphocytes using liquid chromatography-mass spectrometry (LC-MS). siRNA was used to silence protein expression in the breast cancer cells to study contribution to in vitro BBB passage. Furthermore, protein expression in primary breast cancer tissues was explored and related to brain-metastatic potential. Results: Co-culturing with activated T lymphocytes or their conditioned medium (CM) resulted in increased passage through the in vitro BBB. The effects were less for cell line MDA-MB-231-B2M2 (brain affinity) as compared to MDA-MB-231 and SK-BR-7. Mass spectrometry-based proteomics revealed significant alterations in the expression of 35 proteins by the breast cancer cell lines upon T cell contact. Among the proteins is coronin-1A, a protein related to cell motility. Knockdown of CORO1A in the breast cancer cells reduced their ability to cross the artificial BBB to 60%. The effects were significantly less for the cell line derived from breast cancer with affinity for brain. The expression of coronin-1A was confirmed by immunohistochemistry and RT-PCR of 52 breast cancer samples of patients with metastasized breast cancers, with and without brain locations. Lastly, CORO1A upregulation was validated in a publicly available mRNA expression database from 204 primary breast cancers with known metastatic sites. Conclusions: We conclude that T lymphocytes trigger cancer cells to express proteins including coronin-1A that enable the cancer cells to cross an in vitro BBB. In addition, a prominent role of coronin-1A in the formation of cerebral metastases in breast cancer patients is strongly suggestive by its upregulation in tissue samples of breast cancer patients with brain metastases.
<p>Schematic summarizing the branched logic used to determine the origin of sequence alterations identified in plasma NGS. Variants representing lung cancer hotspots were classified as tumor-derived, independent of their presence in matched WBC DNA NGS. Variants with a variant allele fraction (VAF) >25% in all WBC DNA and plasma samples from a patient were classified as germline. Alterations that were detected in matched WBC DNA sequencing or in the canonical clonal hematopoiesis (CH) gene DNMT3A were classified as CH-derived. For all variants detected in plasma using TEC-Seq but not in matched WBC DNA samples (based on a threshold of >3 supermutants), we performed an additional evaluation of their supermutant counts in the WBC DNA sequence data to exclude potential CH origin. Plasma variants with a supermutant count of >1 in matched WBC DNA TEC-Seq data were classified as CH-derived and alterations with a matched WBC DNA supermutant count of 0 were assigned a tumor-derived origin.</p>
<p>Survival analyses of 31 patients with evaluable baseline plasma samples revealed that ctDNA molecular responses were significantly associated with both (A) overall survival-OS and (B) progression-free survival-PFS. Patients classified as molecular responders had a significantly longer OS and PFS compared to patients who were assigned a classification of molecular response f/b recrudescence or molecular progression. Comparison between molecular responses and radiographic assessments (PR/CR vs SD/PD/MR) in these patients revealed that ctDNA molecular responses were a stronger predictor of (C) OS at 12 and (D) 36 months and PFS at (E) 3 and (F) 12 months, compared to best overall radiographic responses.</p>