Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level. Here we discover the molecular effector that links the cell-non-autonomous DAF-16/FOXO activity to GSPC maintenance over time by performing a tissue-specific DAF-16/FOXO transcriptome analysis. Our data show that dos-3, which encodes a non-canonical Notch ligand, is a direct transcriptional target of DAF-16/FOXO and mediates the effect of the cell-non-autonomous DAF-16/FOXO activity on GSPC maintenance through activating Notch signaling in the germ line. Importantly, expression of a human homologous protein can functionally substitute for DOS-3 in this scenario. As Notch signaling controls the specification of many tissue stem cells, similar mechanisms may exist in other aging stem cell systems.
The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation.Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood.We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells.Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones.The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition.We provide experimental data consistent with the latter hypothesis.Finally, we present cell trajectories and ancestry recorded over the course of a simulation.The novel approaches and software described here link mechanics and cellular decisionmaking, and are applicable to modeling other developmental and stem cell systems.
Bombyx mori doublesex (Bmdsx) functions as a double-switch gene in the final step of the sex-determination cascade in the silkworm Bombyx mori. The P-element somatic inhibitor (PSI) protein in B. mori interacts with Bmdsx pre-mRNA in CE1 as an exonic splicing silencer to promote male-specific splicing of Bmdsx. However, the character of the interaction between BmPSI and Bmdsx pre-mRNA remains unclear. Electrophoretic mobility shift assay (EMSA) results showed that the four KH_1 motifs in BmPSI are all essential for the binding, especially the former two KH_1 motifs. Three active sites (I116, L127, and IGGI) in the KH_1 motif were found to be necessary for the binding through EMSA, circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The PSI homologous protein in S. litura (SlPSI) was purified and the binding of SlPSI and CE1 was verified. Compared with BmPSI, the mutant SlPSI proteins of I116 and IGGI lost their ability to bind to CE1. In conclusion, the binding of PSI and dsx pre-mRNA are generally conserved in both B. mori and S. litura. These findings provide clues for sex determination in Lepidoptera.
Lipids are required as integral building blocks of cells to support cellular structures and functions. The intricate mechanisms underpinning lipid homeostasis are essential for the health and maintenance of the central nervous system. Here we summarize the recent advances in dissecting the effect of lipid metabolism on cognitive function and its age-associated decline by reviewing relevant studies ranging from invertebrate model organisms to mammals including human.
The decline in sperm function is a major cause of human male infertility. Glutaminase, a mitochondrial enzyme that catalyzes the hydrolysis of glutamine to generate glutamate, takes part in many diverse biological processes such as neurotransmission, metabolism, and cellular senescence. Here we report the role of glutaminase in regulating sperm function. By generating a triple mutant that harbors a loss-of-function allele for each of all three mammalian glutaminase orthologs, we found that glutaminase gene activity is required for optimal Caenorhabditis elegans sperm function. Tissue-specific gene manipulations showed that germline glutaminase activity plays an important role. Moreover, transcriptional profiling and antioxidant treatment suggested that glutaminase promotes sperm function by maintaining cellular redox homeostasis. As maintaining a low level of ROS is crucial to human sperm function, it is very likely that glutaminase plays a similar role in humans and therefore can be a potential target for treating human male infertility.
The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems.
Abstract Stem cells maintain tissues and organs over the lifespan of individuals. How aging influences this process is unclear. Here we investigate the effects of aging on C. elegans germline stem/progenitor cells and show that the progenitor pool is depleted over time in a manner dependent on inhibition of DAF-16/FOXO by insulin/IGF-1 signalling (IIS). Our data indicate that DAF-16/FOXO activity in certain somatic gonad cells is required for germline progenitor maintenance, and that this role is separable from the effect of DAF-16/FOXO on organismal aging. In addition, blocking germ cell flux, similar to reducing IIS, maintains germline progenitors. This effect is partially dependent on gonadal DAF-16/FOXO activity. Our results imply that (1) longevity pathways can regulate aging stem cells through anatomically separable mechanisms, (2) stem cell maintenance is not necessarily prioritized and (3) stem cell regulation can occur at the level of an entire organ system such as the reproductive system.
In a microarray-based gene profiling analysis of Müller glia-derived retinal stem cells in light-damaged retinas from adult zebrafish, we found that 2 genes required for regeneration of fin and heart tissues in zebrafish, hspd1 (heat shock 60-kDa protein 1) and mps1 (monopolar spindle 1), were up-regulated. Expression of both genes in the neurogenic Müller glia and progenitors was independently verified by quantitative reverse transcriptase PCR and in situ hybridization. Functional analysis of temperature-sensitive mutants of hspd1 and mps1 revealed that both are necessary for Müller glia-based cone photoreceptor regeneration in adult zebrafish retina. In the amputated fin, hspd1 is required for the induction of mesenchymal stem cells and blastema formation, whereas mps1 is required at a later step for rapid cell proliferation and outgrowth. This temporal sequence of hspd1 and mps1 function is conserved in the regenerating retina. Comparison of gene expression profiles from regenerating zebrafish retina, caudal fin, and heart muscle revealed additional candidate genes potentially implicated in injury-induced epimorphic regeneration in diverse zebrafish tissues.