The GALAH survey is a large high-resolution spectroscopic survey using the newly commissioned HERMES spectrograph on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~28,000) spectra in four passbands for 392 stars simultaneously over a 2 degree field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V~14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, alpha-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
We present the effective temperatures, surface gravities and abundances of iron, carbon and barium of 848 giant branch stars, of which 557 also have well-defined nitrogen abundances, of the globular cluster {\omega} Centauri. This work used photometric sources and lower resolution spectra for this abundance analysis. Spectral indices were used to estimate the oxygen abundance of the stars, leading to a determination of whether a particular star was oxygen-rich or oxygen-poor. The 557-star subset was analyzed in the context of evolutionary groups, with four broad groups identified. These groups suggest that there were at least four main four periods of star formation in the cluster. The exact order of these star formation events is not yet understood. These results compare well with those found at higher resolution and show the value of more extensive lower resolution spectral surveys. They also highlight the need for large samples of stars when working with a complex object like {\omega} Cen.
A simple whole-body counter, designed for clinical applications, with a modest amount of shielding close to the NaI crystal, is shown to have adequate sensitivity for use in radiation protection.
We present the first spectroscopic measurements of the ATLAS and Aliqa Uma streams from the Southern Stellar Stream Spectroscopic Survey ($S^5$), in combination with the photometric data from the Dark Energy Survey and astrometric data from $Gaia$. From the coherence of spectroscopic members in radial velocity and proper motion, we find out that these two systems are extremely likely to be one stream with discontinuity in morphology and density on the sky (the "kink" feature). We refer to this entire stream as the ATLAS-Aliqa Uma stream, or the AAU stream. We perform a comprehensive exploration of the effect of baryonic substructures and find that only an encounter with the Sagittarius dwarf $\sim 0.5$ Gyr ago can create a feature similar to the observed "kink". In addition, we also identify two gaps in the ATLAS component associated with the broadening in the stream width (the "broadening" feature). These gaps have likely been created by small mass perturbers, such as dark matter halos, as the AAU stream is the most distant cold stream known with severe variations in both the stream surface density and the stream track on the sky. With the stream track, stream distance and kinematic information, we determine the orbit of the AAU stream and find that it has been affected by the Large Magellanic Cloud, resulting in a misalignment between the proper motion and stream track. Together with the Orphan-Chenab Stream, AAU is the second stream pair that has been found to be a single stream separated into two segments by external perturbation.
We report the discovery of the only very nitrogen-enhanced metal-poor star known in a Galactic globular cluster. This star, in the very metal-poor cluster ESO280-SC06, has [N/Fe]$>+2.5$, while the other stars in the cluster show no obvious enhancement in nitrogen. Around 80 NEMP stars are known in the field, and their abundance patterns are believed to reflect mass transfer from a binary companion in the asymptotic giant branch phase. The dense environment of globular clusters is detrimental to the long-term survival of binary systems, resulting in a low observed binary fraction among red giants and the near absence of NEMP stars. We also identify the first known horizontal branch members of ESO280-SC06, which allow for a much better constraint on its distance. We calculate an updated orbit for the cluster based on our revised distance of $20.6 \pm 0.5~$kpc, and find no significant change to its orbital properties.