M'brio aiginolyticus has a single po]ar flageltum responsibie for moti]ity by utilizing sodium motive force.The flagellar motor consists ofrotor and stator.It is thought that rotor-stator interaction that coup]es to Na' flux through the stator generates terque.However, the direct interaction between rotor and stator has not been detected clearly in vitro yet, presumably because such an interaction is weak and transient.Here, to establish a new method to deteet interactions between rotor and stator, we used Ftuorescence Cerrelation Spectroscopy
By using mutants of Vibrio alginolyticus with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+), we examined the relationship between swimming speed and the viscosity of the medium for each flagellar system. Pof+ Laf- cells could not swim in the high-viscosity environment (ca. 200 cP) in which Pof- Laf+ cells swam at 20 microns/s. The Pof- Laf+ cells swam at about 20 microns/s at normal viscosity (1 cP) without the viscous agent, and the speed increased to 40 microns/s at about 5 cP and then decreased gradually as the viscosity was increased further. These results show the functional difference between polar and lateral flagella in viscous environments.
The controller for the head positioning system of a hard disk drive must have both high performance and high robustness. This paper presents a user-friendly loop-shaping design method employing the Robust Bode (RBode) plot for the head positioning system. By using the RBode plot, control engineers can easily design controllers that can suppress disturbances and account for perturbations of the controlled object with frequency response data alone. A transfer function-based nominal model is not required. As a result, the engineer can avoid the excessively conservative designs while accommodating perturbations in the plant and improve the controller performance. The design results for a benchmark hard disk drive problem show the usefulness of proposed method.
The polar flagella of Vibrio alginolyticus are driven by sodium motive force and those motors are specifically and strongly inhibited by phenamil, an amiloride analog that is thought to interact with a sodium channel of the flagellar motor. To study the sodium ion coupling site, we isolated motility mutants resistant to phenamil and named the phenotype Mpa(r) for motility resistant to phenamil. The motility of the wild-type (Mpa(s)) was inhibited by 50 microM phenamil, whereas Mpa(r) strains were still motile in the presence of 200 microM phenamil. The Ki value for phenamil in the Mpa(r) strain was estimated to be five times larger than that in the Mpa(s) strain. However, the sensitivities to amiloride or benzamil, another amiloride analog, were not distinctly changed in the Mpa(r) strain. The rotation rate of the wild-type Na+-driven motor fluctuates greatly in the presence of phenamil, which can be explained in terms of a relatively slow dissociation rate of phenamil from the motor. We therefore studied the stability of the rotation of the Mpa(r) and Mpa(s) motors by phenamil. The speed fluctuations of the Mpa(r) motors were distinctly reduced relative to the Mpas motors. The steadier rotation of the Mpa(r) motors can be explained by an increase in the phenamil dissociation rate from a sodium channel of the motor, which suggests that a phenamil-specific binding site of the motor is mutated in the Mpa(r) strain.
Abstract The effects of ionizing radiation on bacteria are generally evaluated from the dose-dependent survival ratio, which is determined by colony-forming ability and mutation rate. The mutagenic damage to cellular DNA induced by radiation has been extensively investigated; however, the effects of irradiation on the cellular machinery in situ remain unclear. In the present work, we irradiated Escherichia coli cells in liquid media with gamma rays from 60Co (in doses up to 8 kGy). The swimming speeds of the cells were measured using a microscope. We found that the swimming speed was unaltered in cells irradiated with a lethal dose of gamma rays. However, the fraction of motile cells decreased in a dose-dependent manner. Similar results were observed when protein synthesis was inhibited by treatment with kanamycin. Evaluation of bacterial swimming speed and the motile fraction after irradiation revealed that some E. coli cells without the potential of cell growth and division remained motile for several hours after irradiation.
Porphyromonas gingivalis, a causative agent of periodontitis, has at least two types of thin, single-stranded fimbriae, termed FimA and Mfa1 (according to the names of major subunits), which can be discriminated by filament length and by the size of their major fimbrilin subunits. FimA fimbriae are long filaments that are easily detached from cells, whereas Mfa1 fimbriae are short filaments that are tightly bound to cells. However, a P. gingivalis ATCC 33277-derived mutant deficient in mfa2 , a gene downstream of mfa1 , produced long filaments (10 times longer than those of the parent), easily detached from the cell surface, similar to FimA fimbriae. Longer Mfa1 fimbriae contributed to stronger autoaggregation of bacterial cells. Complementation of the mutant with the wild-type mfa2 allele in trans restored the parental phenotype. Mfa2 is present in the outer membrane of P. gingivalis , but does not co-purify with the Mfa1 fimbriae. However, co-immunoprecipitation demonstrated that Mfa2 and Mfa1 are associated with each other in whole P. gingivalis cells. Furthermore, immunogold microscopy, including double labelling, confirmed that Mfa2 was located on the cell surface and likely associated with Mfa1 fimbriae. Mfa2 may therefore play a role as an anchor for the Mfa1 fimbriae and also as a regulator of Mfa1 filament length. Two additional downstream genes (pgn0289 and pgn0290) are co-transcribed with mfa1 (pgn0287) and mfa2 (pgn0288), and proteins derived from pgn0289, pgn0290 and pgn0291 appear to be accessory fimbrial components.
L-arginine has attracted a great deal of attention as an agent for refolding denatured proteins, and the mildness of its effects offer hope for a wide range of potential applications for this substance, including medicines with few side effects. We report that both l- and d-arginine inhibits Na+-driven flagellar motors of alkaliphilic Bacillus by competing with Na+, which we take as evidence that arginine specifically binds to a molecular target.