Purpose Several prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations—including ASXL1—have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. Patients and Methods We genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model. Results ASXL1 mutations (P < .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×10 9 /L, platelet count less than 100 ×10 9 /L, and anemia (hemoglobin < 10 g/dL in female patients, < 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P < .0001), and was validated in an independent cohort of 165 patients (P < .0001). Conclusion A new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters.
The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Abstract Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy affecting the elderly, for which therapeutic options are limited. DNA hypomethylating agents (HMAs) provide transient responses, failing to eradicate the malignant clone. Hematopoietic stem cell (HSC) aging involves heterochromatin reorganization, evidenced by alterations in histone marks H3K9me2 and H3K9me3. These repressive marks together with DNA methylation are essential for suppressing transposable elements (TEs). In solid cancers, the antitumor efficacy of HMAs involves the derepression of TEs, mimicking a state of viral infection. In this study, we demonstrate a significant disorganization of heterochromatin in CMML HSCs and progenitors (HSPCs) characterized by an increase in the repressive mark H3K9me2, mainly at the level of TEs, and a repression of immune and age-associated transcripts. Combining HMAs with G9A/GLP H3K9me2 methyltransferase inhibitors reactivates these pathways, selectively targeting mutated cells while preserving wild-type HSCs, thus offering new therapeutic avenues for this severe myeloid malignancy.
Chronic myelomonocytic leukemia (CMML) is a severe myeloid malignancy with limited therapeutic options. Single-cell analysis of clonal architecture demonstrates early clonal dominance with few residual WT hematopoietic stem cells. Circulating myeloid cells of the leukemic clone and the cytokines they produce generate a deleterious inflammatory climate. Our hypothesis is that therapeutic control of the inflammatory component in CMML could contribute to stepping down disease progression. The present study explored the contribution of immature granulocytes (iGRANs) to CMML progression. iGRANs were detected and quantified in the peripheral blood of patients by spectral and conventional flow cytometry. Their accumulation was a potent and independent poor prognostic factor. These cells belong to the leukemic clone and behaved as myeloid-derived suppressor cells. Bulk and single-cell RNA-Seq revealed a proinflammatory status of iGRAN that secreted multiple cytokines of which CXCL8 was at the highest level. This cytokine inhibited the proliferation of WT but not CMML hematopoietic stem and progenitor cells (HSPCs) in which CXCL8 receptors were downregulated. CXCL8 receptor inhibitors and CXCL8 blockade restored WT HSPC proliferation, suggesting that relieving CXCL8 selective pressure on WT HSPCs is a potential strategy to slow CMML progression and restore some healthy hematopoiesis.
Hydroxyurea (HY) is a reference treatment of advanced myeloproliferative neoplasms. We conducted a randomized phase III trial comparing decitabine (DAC) and HY in advanced myeloproliferative chronic myelomonocytic leukemias (CMML). Newly diagnosed myeloproliferative CMML patients with advanced disease were randomly assigned 1:1 to intravenous DAC (20 mg/m2/d days 1-5) or HY (1-4 g/d) in 28-day cycles. The primary end point was event-free survival (EFS), events being death and acute myelomonocytic leukemia (AML) transformation or progression. One-hundred seventy patients received DAC (n = 84) or HY (n = 86). Median age was 72 and 74 years, and median WBC count 32.5 × 109/L and 31.2 × 109/L in the DAC and HY arms, respectively. Thirty-three percent of DAC and 31% of HY patients had CMML-2. Patients received a median of five DAC and six HY cycles. With a median follow-up of 17.5 months, median EFS was 12.1 months in the DAC arm and 10.3 months in the HY arm (hazard ratio [HR], 0.83; 95% CI, 0.59 to 1.16; P = .27). There was no significant interaction between treatment effect and blast or platelet count, anemia, CMML Prognostic Scoring System, Groupe Francophone des Myelodysplasies, or CMML Prognostic Scoring System-mol risk. Fifty-three (63%) DAC patients achieved a response compared with 30 (35%) HY patients (P = .0004). Median duration of response was similar in both arms (DAC, 16.3 months; HY, 17.4 months; P = .90). Median overall survival was 18.4 months in the DAC arm and 21.9 months in the HY arm (P = .67). Compared with HY, DAC significantly reduced the risk of CMML progression or transformation to acute myelomonocytic leukemia (cause-specific HR, 0.62; 95% CI, 0.41 to 0.94; P = .005) at the expense of death without progression or transformation (cause-specific HR, 1.55; 95% CI, 0.82 to 2.9; P = .04). Compared with HY, frontline treatment with DAC did not improve EFS in patients with advanced myeloproliferative CMML (ClinicalTrials.gov identifier: NCT02214407).