Abstract Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ 14 C/δ 13 C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30±10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions.
Abstract. High-Mountain Asia (HMA) is a global hotspot of stratospheric intrusion, and elevated surface ozone were observed at ground monitoring sites. Still, links between the variability of surface ozone and stratospheric intrusion at regional scale remain unclear. This study synthesized ground measurements of surface ozone over the HMA and analyzed their seasonal variations. The monthly mean surface ozone concentrations peaked earlier in the south in April and later in the north in July over the HMA. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folding and westerly jet that created a conducive conditions for stratospheric ozone intrusion. Such intrusion contributed ~65 % of surface ozone at three typical sites across the HMA. We demonstrated that surface ozone over the HMA is mainly controlled by stratospheric intrusion, which warrants a proper consideration in understanding atmospheric chemistry and impacts of ozone over this highland region and beyond.