ABSTRACT Archaea are abundant and drive critical microbial processes in the Earth's cold biosphere. Despite this, not enough is known about the molecular mechanisms of cold adaptation and no biochemical studies have been performed on stenopsychrophilic archaea (e.g., Methanogenium frigidum ). This study examined the structural and functional properties of cold shock proteins (Csps) from archaea, including biochemical analysis of the Csp from M. frigidum. csp genes are present in most bacteria and some eucarya but absent from most archaeal genome sequences, most notably, those of all archaeal thermophiles and hyperthermophiles. In bacteria, Csps are small, nucleic acid binding proteins involved in a variety of cellular processes, such as transcription. In this study, archaeal Csp function was assessed by examining the ability of csp genes from psychrophilic and mesophilic Euryarchaeota and Crenarchaeota to complement a cold-sensitive growth defect in Escherichia coli . In addition, an archaeal gene with a cold shock domain (CSD) fold but little sequence identity to Csps was also examined. Genes encoding Csps or a CSD structural analog from three psychrophilic archaea rescued the E. coli growth defect. The three proteins were predicted to have a higher content of solvent-exposed basic residues than the noncomplementing proteins, and the basic residues were located on the nucleic acid binding surface, similar to their arrangement in E. coli CspA. The M. frigidum Csp was purified and found to be a single-domain protein that folds by a reversible two-state mechanism and to exhibit a low conformational stability typical of cold-adapted proteins. Moreover, M. frigidum Csp was characterized as binding E. coli single-stranded RNA, consistent with its ability to complement function in E. coli . The studies show that some Csp and CSD fold proteins have retained sufficient similarity throughout evolution in the Archaea to be able to function effectively in the Bacteria and that the function of the archaeal proteins relates to cold adaptation. The initial biochemical analysis of M. frigidum Csp has developed a platform for further characterization and demonstrates the potential for expanding molecular studies of proteins from this important archaeal stenopsychrophile.
Cilia are microtubule-based organelles protruding from almost all mammalian cells which, when dysfunctional, result in genetic disorders called “ciliopathies”. High-throughput studies have revealed that cilia are composed of thousands of proteins. However, despite many efforts, much remains to be determined regarding the biological functions of this increasingly important complex organelle. We have derived an online tool, from a systematic network-based approach to dissect the cilia/centrosome complex interactome (CCCI). The tool integrates all current available data into a model which provides an “interaction” perspective on ciliary function. We generated a network of interactions between human proteins organized into functionally relevant “communities”, which can be defined as groups of genes that are both highly inter-connected and strongly co-expressed. We then combined sequence and co-expression data in order to identify the transcription factors responsible for regulating genes within their respective communities. Our analyses have discovered communities significantly specialized for delegating specific biological functions such as mRNA processing, protein translation, folding and degradation processes that had never been associated with ciliary proteins until now. CCCI will allow us to clarify the roles of previously unknown ciliary functions, elucidate the molecular mechanisms underlying ciliary-associated phenotypes, and apply our knowledge of the functional roles of relatively uncharacterized molecular entities to disease phenotypes and new clinical applications.
Supplementary information, datasets and fluorescence images related to the article "The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle". The PDF file entitled "Supplementary material" contains the uncropped original western blots and autoradiographs published in the article. The PDF files entitled "Extended Data Fig.2,6,7,9,10 all panels" and "Figure 1,4 all panels" contain the original full-size confocal immunofluorescence images from which specific ROIs are published in the article. The Excel files "Source Data Principal Figures" and "Source Data Extended Figures" contain all the original datasets used for calculation and graphical representation of data published in the article.
Supplementary information, datasets and fluorescence images related to the article "The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle". The PDF file entitled "Supplementary material" contains the uncropped original western blots and autoradiographs published in the article. The PDF files entitled "Extended Data Fig.2,6,7,9,10 all panels" and "Figure 1,4 all panels" contain the original full-size confocal immunofluorescence images from which specific ROIs are published in the article. The Excel files "Source Data Principal Figures" and "Source Data Extended Figures" contain all the original datasets used for calculation and graphical representation of data published in the article.
The TRAnsport-Protein-Particle (TRAPP) complex controls multiple membrane trafficking steps and is thus strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified TRAPP as a key component of a branch of the integrated stress response that impinges on the early secretory pathway. TRAPP associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and an arrest of ER export. Interestingly, the relocation of TRAPP and COPII to SGs only occurs in actively proliferating cells and is CDK1/2-dependent. We show that CDK1/2 activity controls the COPII cycle at ER exit sites (ERES) and that its inhibition prevents TRAPP/COPII relocation to SGs by stabilizing them at the ERES. Importantly, TRAPP is not just a passive constituent of SGs but controls their maturation since SGs that assemble in TRAPP-depleted cells are smaller and are no longer able to recruit RACK1 and Raptor, rendering the cells more prone to undergo apoptosis upon stress exposure.
The molecular mechanisms underlying SARS-CoV-2 host cell invasion and life cycle have been studied extensively in recent years, with a primary focus on viral entry and internalization with the aim of identifying antiviral therapies. By contrast, our understanding of the molecular mechanisms involved in the later steps of the coronavirus life cycle is relatively limited. In this review, we describe what is known about the host factors and viral proteins involved in the replication, assembly, and egress phases of SARS-CoV-2, which induce significant host membrane rearrangements. We also discuss the limits of the current approaches and the knowledge gaps still to be addressed.
ObjectiveWe built a network of curated interactions between human proteins involved with centrioles, centrosomes, basal bodies and cilia to provide a global functional characterization of the Cilia/Centrosome Complex interactome (CCCI).