In this work we tackle the problem of search personalization for on-line soft goods shopping. By learning what the user likes and what the user does not like, better search rankings and therefore a better overall shopping experience can be obtained. The first contribution of the work is in terms of feature selection: given the specific nature of the domain, we combine the traditional visual and text feature into a fashion-driven low dimensional space, compact yet very discriminative. On the learning stage, we describe a two step hybrid learning algorithm, that combines a discriminative model learned off-line over historical data, with an extremely efficient generative model, updated on-line according to the user behavior. Qualitative and quantitative analyses show promising results.
In this paper we introduce novel regularization techniques for level set segmentation that target specifically the problem of multiphase segmentation. When the multiphase model is used to obtain a partitioning of the image in more than two regions, a new set of issues arise with respect to the single phase case in terms of regularization strategies. For example, if smoothing or shrinking each contour individually could be a good model in the single phase case, this is not necessarily true in the multiphase scenario. In this paper, we address these issues designing enhanced length and area regularization terms, whose minimization yields evolution equations in which each level set function involved in the multiphase segmentation can "sense" the presence of the other level set functions and evolve accordingly. In other words, the coupling of the level set function, which before was limited to the data term (i.e. the proper segmentation driving force), is extended in a mathematically principled way to the regularization terms as well. The resulting regularization technique is more suitable to eliminate spurious regions and other kind of artifacts. An extensive experimental evaluation supports the model we introduce in this paper, showing improved segmentation performance with respect to traditional regularization techniques.
Object segmentation needs to be driven by top-down knowledge to produce semantically meaningful results. In this paper, we propose a supervised segmentation approach that tightly integrates object-level top down information with low-level image cues. The information from the two levels is fused under a kernelized structural SVM learning framework. We defined a novel nonlinear kernel for comparing two image-segmentation masks. This kernel combines four different kernels: the object similarity kernel, the object shape kernel, the per-image color distribution kernel, and the global color distribution kernel. Our experiments show that the structured SVM algorithm finds bad segmentations of the training examples given the current scoring function and punishes these bad segmentations to lower scores than the example (good) segmentations. The result is a segmentation algorithm that not only knows what good segmentations are, but also learns potential segmentation mistakes and tries to avoid them. Our proposed approach can obtain comparable performance to other state-of-the-art top-down driven segmentation approaches yet is flexible enough to be applied to widely different domains.
We introduce a robust image segmentation method based on a variational formulation using edge flow vectors. We demonstrate the nonconservative nature of this flow field, a feature that helps in a better segmentation of objects with concavities. A multiscale version of this method is developed and is shown to improve the localization of the object boundaries. We compare and contrast the proposed method with well known state-of-the-art methods. Detailed experimental results are provided on both synthetic and natural images that demonstrate that the proposed approach is quite competitive.
In this paper, we analyze the redundancy in calculating all pairs of geodesic distances on a rectangular grid. Fast marching method is an efficient way to estimate the geodesic distances from a point. But when calculated for all the points on the grid, this introduces certain redundancy. Our analysis shows that over 90% of the distances are actually recalculated. We propose a novel solution which exploits this redundancy to reduce the number of distances evaluated using the fast marching method and enforces the symmetry of the distance matrix. Experimental results show the improved accuracy obtained with our implementation.