Low oxygen levels (hypoxia) play a role in clinical conditions such as stroke, chronic ischemia, and cancer. To better understand these diseases, it is crucial to study the responses of vertebrates to hypoxia. Among vertebrates, some teleosts have developed the ability to adapt to extremely low oxygen levels. We have studied long-term adaptive responses to hypoxia in adult zebrafish. We used zebrafish that survived severe hypoxic conditions for 3 wk and showed adaptive behavioral and phenotypic changes. We used cDNA microarrays to investigate hypoxia-induced changes in expression of 15,532 genes in the respiratory organs (the gills). We have identified 367 differentially expressed genes of which 117 showed hypoxia-induced and 250 hypoxia-reduced expressions. Metabolic depression was indicated by repression of genes in the TCA cycle in the electron transport chain and of genes involved in protein biosynthesis. We observed enhanced expression of the monocarboxylate transporter and of the oxygen transporter myoglobin. The hypoxia-induced group further included the genes for Niemann-Pick C disease and for Wolman disease [lysosomal acid lipase (LAL)]. Both diseases lead to a similar intra- and extracellular accumulation of cholesterol and glycolipids. The Niemann-Pick C protein binds to cholesterol from internal lysosomal membranes and is involved in cholesterol trafficking. LAL is responsible for lysosomal cholesterol degradation. Our data suggest a novel adaptive mechanism to hypoxia, the induction of genes for lysosomal lipid trafficking and degradation. Studying physiological responses to hypoxia in species tolerant for extremely low oxygen levels can help identify novel regulatory genes, which may have important clinical implications.
Protein-protein interaction networks provide a global picture of cellular function and biological processes. Proteins interact largely through specific domains which constitute the main building blocks of an interaction network. Perturbed or dysfunctional protein interactions are linked to many diseases, including cancer. In this study we describe the major pathways and connections within the human cancer network by a novel approach in which we overlay the human cancer network with all protein interaction domain (PID) superfamilies. Based on 38,777 experimentally derived interactions, we constructed a cancer network with 8 different levels and identified all major protein hubs within this cancer interactome. Only one percent of the cancer genes constitute over 50 percent of all interactions within the network. In addition, we mapped 56 PID superfamilies onto the cancer network, and discovered that over 10% of protein interaction domains are overrepresented within the cancer interactome when compared to the normal protein network. We present here a comprehensive list of all PIDs in the cancer network, identify the most important hubs within it and discover several individual genes which had previously not been linked to cancer. These proteins constitute excellent targets for the development of novel cancer therapeutics. Our results further hint to a partial molecular commonality between cancer and neurodegenerative diseases such as Alzheimer’s and Huntington’s.
The novel luminescent gold(I) complex [N-(N′,N′-dimethylaminoethyl)-1,8-naphthalimide-4-sulfide](triethylphosphine)gold(I) was prepared and investigated for its primary biological properties. Cell culture experiments revealed strong antiproliferative effects and induction of apoptosis via mitochondrial pathways. Biodistribution studies by fluorescence microscopy and atomic absorption spectroscopy showed the uptake into cell organelles, an accumulation in the nuclei of tumor cells, and a homogeneous distribution in zebrafish embryos. In vivo monitoring of vascularisation in developing zebrafish embryos revealed a significant anti-angiogenic potency of the complex. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (based on the covalent binding of a gold triethylphosphine fragment) might be involved in the pharmacodynamic behavior of this novel gold species.
The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks.
Golden times for metal-based drugs? Alkynyl triphenylphosphine gold(I) complexes display interesting biological properties and show high potential for future drug development. They are strong inhibitors of the enzyme thioredoxin reductase, trigger antiproliferative effects in tumor cells, and influence tumor cell metabolism, mitochondrial respiration, and angiogenesis in zebrafish embryos. Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
The two LIM kinases (LIMKs) LIMK1 and LIMK2 are members of the PDZ/LIM family. These serine/threonine protein kinases are involved in actin cytoskeleton reorganization through phosphorylation and inactivation of ADF/cofilin. Different subcellular localizations of LIMK1 and LIMK2 suggest different functions. LIMK1 is implicated in microtubule disassembly in endothelial- and cancer cells, whereas LIMK2 plays a role in cell cycle progression. To compare the role of the two LIMKs in cancer-related processes, we used a cell-based in vitro migration assay, as well as two zebrafish xenograft assays. We analyzed here the metastatic behavior and tumor cell-induced neovascularization of pancreatic cancer cells in which both LIMK genes were silenced by siRNAs. Both LIMK1 and LIMK2 single knock down led to a reduction of invasion and metastatic behavior in the zebrafish xenograft metastasis assay. Interestingly, the double knock down completely blocked invasion and formation of micrometastasis in vivo. Moreover, in the zebrafish xenograft angiogenesis assay, we observed a reduction of pancreatic cancer cell-induced angiogenesis for both the LIMK1 and LIMK2 knockdowns. Our results demonstrate similar functions for the two LIMKs in pancreatic cancer cells and suggest an important role for both LIMK1 and LIMK2 in tumor progression and metastasis formation.
The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.
The globin family, including hemoglobin, myoglobin, neuroglobin and cytoglobin, plays an important role in oxygen storage and delivery. Myoglobin has been shown to be necessary for cardiac function during development, but no information is currently available on the developmental regulation of myoglobin gene expression during embryogenesis. In this study, we used whole mount in situ hybridization to visualize myoglobin mRNA expression during zebrafish development. Our results show for the first time the spatial and temporal gene expression pattern of myoglobin during embryogenesis. Myoglobin was expressed as a maternal RNA and ubiquitous expression was observed until the end of gastrulation. At later stages of development, we discovered novel expression domains for myoglobin, including several non-muscular ones. Environmental stresses, like low oxygen tension (hypoxia) can lead to a developmental delay in zebrafish embryos. We show here that hypoxic stress induces myoglobin expression in skeletal muscle cells of anterior somites and in the dorsal aorta of zebrafish larvae. Finally, we analyzed the role of myoglobins in development by targeted gene knock-down. Silencing myoglobin in zebrafish embryos with gene-specific morpholinos led to a dose dependent curvature, vascular defects, enlarged pericardia and reduction of the gut. In conclusion, our results indicate that myoglobin plays a crucial role in zebrafish development and is important for angiogenesis and gut development.