To date, there are no simple and minimally invasive methods to diagnose MDR. Extracellular vesicles (EVs) are shed by all cells, carry a specific cargo from the donor cells and are present in several body fluids, which means that they can potentially be easily collected from cancer patients and become the source of biomarkers to diagnose cancer. This data article contains a full list of the proteins identified in the EVs shed by an isogenic pair of chronic myeloid leukaemia cells (MDR cells and their drug-sensitive counterparts) by LC/MS/MS analysis, together with their GeneOntology analysis. In addition, it also contains data from protein content analysis and Dynamic light scattering count-rate events of the referred EVs as well as of the EVs shed from an isogenic pair of non-small cell lung cancer cells (MDR cells and their drug-sensitive counterparts). The interpretation of the data presented in this article and further extensive insights can be found in "Multidrug resistant tumour cells shed more microvesicles-like EVs and less exosomes than their drug-sensitive counterpart cells" [1].
Article A Non-invasive System for Delivering Neural Growth Factors across the Blood-Brain Barrier: A Review was published on January 1, 1998 in the journal Reviews in the Neurosciences (volume 9, issue 1).
The intensification and standardization of livestock farming are causing a decline in the number of animal breeds in many species, such as the goat. The availability of more studies on the potentiality of goat breeds could raise awareness of their importance, conservation and productive possibilities. Label-free quantitative analysis was applied in this study to investigate the proteomic differences between the autochthon Teramana and Saanen goats that could be useful for defining peculiar features of these breeds. A total of 2093 proteins were characterized in the muscle exudate proteome of the Teramana and Saanen breeds. A total of 41 proteins clearly separated the two breeds. Eukaryotic initiation factor proteins and aldehyde-dehydrogenase 7 family-member A1 were up-regulated in the autochthon breed and associated with its resilience, whereas catalase was down-regulated and associated with lower muscular mass. This study is the most detailed report of goat muscle proteome. Several differentially regulated proteins between the two breeds were identified, providing insights into functional pathways that define this organism and its biology.
Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment. Intraventricular administration of NGF is necessary because NGF will not cross the blood-brain barrier (BBB). Here we have used a novel carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. In our experiment, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate or a control solution (a mixture of unconjugated OX-26 and NGF) twice weekly for 6 weeks. The OX-26-NGF injections resulted in a significant improvement in spatial learning in previously impaired rats but disrupted the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size in the medial septal region of rats initially impaired in spatial learning. These results indicate the potential use of the transferrin receptor antibody delivery system for treatment of CNS disorders with neurotrophic proteins.
Abstract Media conditioned by dysfunctioning pancreatic beta cells offer an excellent source of potential protein markers associated with this phenotype. Proteins identified from cell culture model systems are often found to be of importance clinically. Previous work by us and others have shown that low‐passage MIN‐6 cells (MIN‐6(L)) respond to changes in glucose concentrations, producing an approximately 5.5‐fold glucose‐stimulated insulin secretion (GSIS) in response to 26.7 mmol/L, compared with 3.3 mmol/L, glucose. After continuous culture or high‐passage (MIN‐(H)), this GSIS was no longer present and thus represents an excellent model system for investigating beta cell dysfunction. Employing 2‐D difference gel electrophoresis and mass spectrometry a panel of protein markers were identified in conditioned media (CM) from MIN‐6(L) and MIN‐6(H) beta cells. These proteins, including secretogranin II, secretogranin III and transthyretin, are associated with secretory granule biogenesis and were found to have substantially increased levels in the CM from the non‐responsive high‐passage MIN‐6 beta cells. A panel of protein markers found to have increased abundance levels in CM from MIN‐6(H) compared with MIN‐6(L) beta cells may have the potential to be used clinically for assessing beta cell function and to monitor the effects of specific therapeutics.