In this study, we present lipid biomarker and palynological data for a sediment core from Lake Dojran (Macedonia/Greece), which covers the entire Holocene period. We analyzed vascular plant-derived n-alkanes, combustion-derived polycyclic aromatic hydrocarbons (PAHs), fecal steroids, and bacterial and archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids in concert with microcharcoal and pollen assemblages to reconstruct climatic, environmental, and human impact in the Dojran catchment and the greater Dojran area. Overall, our results suggest a relationship between anthropogenic activity and environmental/climatic change since increased human impact corresponds to phases of higher humidity and high lake levels at Lake Dojran. During the early Holocene, the record reveals increasing temperatures and humidity and concurrent increasing vegetation cover and runoff/soil erosion, respectively. Following a thermal maximum during the middle early Holocene, temperatures decrease gradually until present. The middle-Holocene at Lake Dojran is characterized by relatively stable environmental conditions followed by greater climatic instability and strong anthropogenic overprint during the late-Holocene. The fecal stanol record reveals phases of increased human impact during the early Bronze Age, the late Bonze/early Iron Age, and the Middle Ages. A phase of low stanol and PAH concentrations from the late Iron Age until the early Middle Ages is either related to ecosystem changes and/or changes in settlement pattern since concurrent pollen data indicate intensified land use. Human impact re-intensified during the Middle Ages with some variability probably related to climatic variations of the ‘Medieval Warm Period’ and the ‘Little Ice Age’.
Abstract. Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
Abstract. Our study aims to reconstruct climate changes that occurred at Lake Ohrid (south-western Balkan Peninsula), the oldest extant lake in Europe, between 160 and 70 ka (covering part of Marine Isotope Stage – "MIS" - 6 and all of MIS 5). A multi-method approach, including the "Modern Analogues Technique" and the "Weighted Averaging Partial Least-Squares Regression", is applied to the high-resolution pollen sequence of the DEEP site, collected from the central part of Lake Ohrid, to provide quantitative estimates of climate and bioclimate parameters. This allows us to document climatic change during the key periods of MIS 6 and MIS 5 in South Europe, a region where accurate climate reconstructions are still lacking for this time interval. Our results for the penultimate glacial show cold and dry conditions, while the onset of the Last Interglacial is characterized by wet and warm conditions, with temperatures higher than today (by ca. 2 °C). The Eemian in the Balkans was not a stable phase and a climatic tri-partition, with an initial phase of abrupt warming (128–121 ka), a central phase with decreasing temperatures associated to wet conditions (121–118 ka), followed by a phase of progressive change towards cold and dry conditions (118–112 ka), is evident. After the Eemian, an alternation of four warm/wet periods with cold/dry ones, likely related to the succession of Greenland stadials and cold events known from the North Atlantic, occurred. The observed pattern is also consistent with hydrological and isotopic data from the central Mediterranean. The Lake Ohrid climate reconstruction shows greater similarity with climate patterns inferred from northern European pollen records than with southern European ones, which is probably due to its intermediate position and the mountainous setting. However, this hypothesis needs further testing as very few climate reconstructions are available for southern Europe for this key time period.
Abstract. On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.
Abstract. Lake Ohrid (Macedonia/Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the first high-resolution diatom analysis during the Lateglacial and Holocene in Lake Ohrid. It demonstrates a complex diatom response to temperature change, with a direct response to temperature-induced productivity and an indirect response to temperature-related stratification/mixing regime and epilimnetic nutrient availability. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low temperature-dependent lake productivity. During the earliest Holocene (ca. 11 800–10 600 cal yr BP), although the slight increase in small, epilimnetic C. minuscula suggests climate warming and enhanced thermal stratification, diatom concentration remains very low as during the Lateglacial, indicating that temperature increase was muted. The early Holocene (ca. 10 600–8200 cal yr BP) marked a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high temperature-induced lake productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP, and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the mid Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for high temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from mesotrophic Stephanodiscus transylvanicus indicative of high temperature-induced productivity in the hypolimnion. During the late Holocene (ca. 2600–0 cal yr BP), high abundance and fluctuating composition of epilimnetic taxa is largely a response to enhanced anthropogenic nutrient input. In this deep, oligotrophic lake, this study demonstrates the strong influence of lake physical and chemical processes in mediating the complex response of diatoms to climate change with particular respect to temperature.