An eLiposome is a liposome encapsulating an emulsion nanodroplet and can be used for drug delivery. For example, therapeutic agents are encapsulated inside the eLiposomes, and the application of ultrasound can cause the emulsion droplet to change from liquid to gas, thus increasing the volume inside the vesicle and causing rupture and the release of the drug. In this research, two different methods were used to prepare eLiposomes. In the first method, emulsion droplets were made of perfluorohexane or perfluoropentane and stabilized with 1,2-dipalmitoyl-sn-glycero-3-phosphate. A layer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine was dried in a round-bottomed flask. Then the emulsion suspension was added to the flask. As the suspension hydrated the phospholipids, they formed liposomes around the emulsions. In the second method, emulsions and liposomes were made separately, and then they were mixed using ultrasound. The advantage of this second method compared to the previous one is that eLiposomes can be made with fewer restrictions because of incompatible combinations of surfactants. Dynamic light scattering and transmission electron microscopy were used to measure the size of the emulsions, liposomes, and eLiposomes. The size of eLiposomes is appropriate for extravasation into tumors with malformed capillary beds. We hypothesize that ultrasound breaks open these eLiposomes. Both types of eLiposomes were constructed with folate attached via a poly(ethylene glycol) tether to induce endocytosis of the eLiposome. The latter eLiposomes were successfully used to deliver calcein as a model drug to HeLa cells.
Abstract HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for purification of HIV virions which minimizes forces applied to virions while maximizing the efficiency of collection. This method allows us to capture between 1,000 and 5,000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone, a 10 fold advantage over other methods. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D 185 A&D 186 A) with an inactive reverse transcriptase, NL4.3(IN: V 165 A&R 166 A) with a type-II integrase mutation, and NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) featuring an edited Ѱ packaging signal. Notably, virions from NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V 165 A&R 166 A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D 185 A&D 186 A) displayed mature cores containing detectable RNP density. We suggest that the purification methods developed in this study can significantly facilitate the characterization of enveloped viruses.
Abstract SARS-CoV-2 virus is the causative agent of COVID-19. Here we demonstrate that non-infectious SARS-CoV-2 virus like particles (VLPs) can be assembled by co-expressing the viral proteins S, M and E in mammalian cells. The assembled SARS-CoV-2 VLPs possess S protein spikes on particle exterior, making them ideal for vaccine development. The particles range in shape from spherical to elongated with a characteristic size of 129 ± 32 nm. We further show that SARS-CoV-2 VLPs dried in ambient conditions can retain their structural integrity upon repeated scans with Atomic Force Microscopy up to a peak force of 1 nN.
Background & Aims: Immune targeting is likely required for functional cure of chronic hepatitis B (CHB). Tobevibart, a human monoclonal antibody against hepatitis B virus (HBV) surface antigen (HBsAg), neutralizes HBV and hepatitis delta virus (HDV). This study aimed to characterize effects of the engineered GAALIE Fc of tobevibart on HBV immune responses. Methods: We studied tobevibart and its equivalent HBC34*-GAALIE in vitro using electron microscopy, FcgR reporter cells, and primary human or mouse immune cells to assess HBsAg binding, dendritic cell (DC) activation, and T cell stimulation. Tobevibart-mediated binding of HBsAg to immune cells was evaluated also in a phase 1 clinical trial in patients with CHB. Results: The GAALIE Fc of tobevibart mediated gain of function in FcgR signaling in immune complexes (ICs) with HBsAg compared to wild-type (WT) Fc and increased binding of HBsAg to neutrophils and monocytes in vitro. Similarly, dosing of 300 mg tobevibart in patients with CHB mediated binding of HBsAg to these cells in vivo, concomitant with reducing HBsAg in circulation. In vitro, ICs of HBC34*-GAALIE and HBsAg activated human DCs significantly more than HBC34*-WT. These DCs presented antigen and stimulated HBsAg-specific human T cells. Similarly, ICs of HBC34*-GAALIE and HBsAg activated DCs from mice transgenic for human FcgRs and stimulated CD4+ T cells from immunized animals more than ICs with HBC34*- WT. Conclusions: We demonstrate that tobevibart combines the advantages of potent neutralization of HBV and HDV, FcgR-mediated reduction of HBsAg, and Fc-dependent enhancement of T cell responses. Tobevibart is currently under clinical investigation alone or in combination with other agents to treat patients with chronic hepatitis delta and to induce functional cure of patients with CHB.