We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.
In this study, we present the genomic characterization of the temperate bacteriophage vB_BceS_KLEB30-3S (KLEB30-3S), which was induced from Bacillus cereus strain KR3M-30, isolated from a gypsum karst lake ecosystem in Lithuania. The 37,134-bp genome of KLEB30-3S contains 58 predicted protein-encoding genes and no tRNA genes.
Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.
Adenine N6 methylation in DNA (6mA) is widespread among bacteria and phage and is detected in mammalian genomes, where its function is largely unexplored. Here we show that 6mA deposition and removal are catalyzed by the Mettl4 methyltransferase and Alkbh4 dioxygenase, respectively, and that 6mA accumulation in genic elements corresponds with transcriptional silencing. Inactivation of murine Mettl4 depletes 6mA and causes sublethality and craniofacial dysmorphism in incross progeny. We identify distinct 6mA sensor domains of prokaryotic origin within the MPND deubiquitinase and ASXL1, a component of the Polycomb repressive deubiquitinase (PR-DUB) complex, both of which act to remove monoubiquitin from histone H2A (H2A-K119Ub), a repressive mark. Deposition of 6mA by Mettl4 triggers the proteolytic destruction of both sensor proteins, preserving genome-wide H2A-K119Ub levels. Expression of the bacterial 6mA methyltransferase Dam, in contrast, fails to destroy either sensor. These findings uncover a native, adversarial 6mA network architecture that preserves Polycomb silencing.
Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.
Abstract Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific phosphatases of the type 2C Ser/Thr protein phosphatase (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. Our work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant and ap2c1 mkp1 double mutant displayed enhanced wound-induced activation of MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants show an autoimmune-like response, associated with elevated levels the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. Interestingly, this phenotype is reduced in ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MPK6 misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MPK6 activity, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development. Highlight Double MAPK phosphatase mutant plants ap2c1 mkp1 exhibit constitutive, autoimmune-like stress responses, dependent on their substrate MAPK MPK6.