Femoral‐facial syndrome (FFS, OMIM 134780), also known as femoral hypoplasia‐unusual face syndrome, is a rare sporadic syndrome associated with maternal diabetes, and comprising femoral hypoplasia/agenesis and a distinct facies characterized by micrognathia, cleft palate, and other minor dysmorphisms. The evaluation of 14 unpublished Brazilian patients, prompted us to make an extensive literature review comparing both sets of data. From 120 previously reported individuals with FFS, 66 were excluded due to: not meeting the inclusion criteria ( n = 21); not providing sufficient data to ascertain the diagnosis ( n = 29); were better assigned to another diagnosis ( n = 3); and, being fetuses of the second trimester ( n = 13) due to the obvious difficult to confirm a typical facies. Clinical‐radiological and family information from 54 typical patients were collected and compared with the 14 new Brazilian patients. The comparison between the two sets of patients did not show any relevant differences. Femoral involvement was most frequently hypoplasia, observed in 91.2% of patients, and the typical facies was characterized by micrognathia (97%), cleft palate (61.8%), and minor dysmorphisms (frontal bossing 63.6%, short nose 91.7%, long philtrum 94.9%, and thin upper lip 92.3%). Clubfoot (55.9%) was commonly observed. Other observed findings may be part of FFS or may be simply concurrent anomalies since maternal diabetes is a common risk factor. While maternal diabetes was the only common feature observed during pregnancy (50.8%), no evidence for a monogenic basis was found. Moreover, a monozygotic discordant twin pair was described reinforcing the absence of a major genetic factor associated with FFS.
Abstract Skeletal dysplasias (SD) are disturbances in growth due to defects intrinsic to the bone and/or cartilage, usually affecting multiple bones and having a progressive character. In this article, we review the state of clinical and research SD resources available in Latin America, including three specific countries (Brazil, Argentina, and Chile), that have established multidisciplinary clinics for the care of these patients. From the epidemiological point of view, the SD prevalence of 3.2 per 10,000 births from nine South American countries included in the ECLAMC network represents the most accurate estimate not just in Latin America, but worldwide. In Brazil, there are currently five groups focused on SD. The data from one of these groups including the website www.ocd.med.br , created to assist in the diagnosis of SD, are highlighted showing that telemedicine for this purpose represents a good strategy for the region. The experience of more than 30 years of the SD multidisciplinary clinic in an Argentinian Hospital is presented, evidencing a solid experience mainly in the follow‐up of the most frequent SD, especially those belonging the FGFR3 group and OI. In Chile, a group with 20 years of experience presents its work with geneticists and pediatricians, focusing on diagnostic purposes and clinical management. Altogether, although SD health‐care and research activities in Latin America are in their early stages, the experience in these three countries seems promising and stimulating for the region as a whole.
CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.
Objective Screen the known craniosynostotic related gene, FGFR1 (exon 7), and two new identified potential candidates, CER1 and CDON, in patients with syndromic and nonsyndromic metopic craniosynostosis to determine if they might be causative genes. Design Using single-strand conformational polymorphisms (SSCPs), denaturing high-performance liquid chromatography, and/or direct sequencing, we analyzed a total of 81 patients for FGFR1 (exon 7), 70 for CER1, and 44 for CDON. Patients Patients were ascertained in the Centro de Estudos do Genoma Humano in São Paulo, Brazil (n = 39), the Craniofacial Unit, Oxford, U.K. (n = 23), and the Johns Hopkins University, Baltimore, Maryland (n = 31). Clinical inclusion criteria included a triangular head and/or forehead, with or without a metopic ridge, and a radiographic documentation of metopic synostosis. Both syndromic and nonsyndromic patients were studied. Results No sequence alterations were found for FGFR1 (exon 7). Different patterns of SSCP migration for CER1 compatible with the segregation of single nucleotide polymorphisms reported in the region were identified. Seventeen sequence alterations were detected in the coding region of CDON, seven of which are new, but segregation analysis in parents and homology studies did not indicate a pathological role. Conclusions: FGFR1 (exon 7), CER1, and CDON are not related to trigonocephaly in our sample and should not be considered as causative genes for metopic synostosis. Screening of FGFR1 (exon 7) for diagnostic purposes should not be performed in trigonocephalic patients.