We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax–Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $\omega$, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: \emph{i)} computation of a suitable incoming plane wavelet with compact support in the propagation direction; \emph{ii)} solving a scattering problem in the time domain for the incoming plane wavelet; \emph{iii)} reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in \emph{ii)}. By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency $\omega$, as shown in the numerical experiments. We also present a new algorithm for computing the Fourier transform in \emph{iii)} that exploits the reduced number of degrees of freedom corresponding to the adapted meshes.
We present new and efficient quadrature rules for computing the stiffness matrices of mass-lumped tetrahedral elements for wave propagation modeling. These quadrature rules allow for a more efficient implementation of the mass-lumped finite element method and can handle materials that are heterogeneous within the element without loss of the convergence rate. The quadrature rules are designed for the specific function spaces of recently developed mass-lumped tetrahedra, which consist of standard polynomial function spaces enriched with higher-degree bubble functions. For the degree-2 mass-lumped tetrahedron, the most efficient quadrature rule seems to be an existing 14-point quadrature rule, but for tetrahedra of degrees 3 and 4, we construct new quadrature rules that require fewer integration points than those currently available in the literature. Several numerical examples confirm that this approach is more efficient than computing the stiffness matrix exactly and that an optimal order of convergence is maintained, even when material properties vary within the element.
<p style='text-indent:20px;'>We consider the initial-value problem for the one-dimensional, time-dependent wave equation with positive, Lipschitz continuous coefficients, which are constant outside a bounded region. Under the assumption of compact support of the initial data, we prove that the local energy decays exponentially fast in time, and provide the explicit constant to which the solution converges for large times. We give explicit estimates of the rate of this exponential decay by two different techniques. The first one is based on the definition of a modified, weighted local energy, with suitably constructed weights. The second one is based on the integral formulation of the problem and, under a more restrictive assumption on the variation of the coefficients, allows us to obtain improved decay rates.</p>
We present a new accuracy condition for the construction of continuous mass-lumped elements. This condition is less restrictive than the one currently used and enabled us to construct new mass-lumped tetrahedral elements of degrees 2 to 4. The new degree-2 and degree-3 tetrahedral elements require 15 and 32 nodes per element, respectively, while currently, these elements require 23 and 50 nodes, respectively. The new degree-4 elements require 60, 61, or 65 nodes per element. Tetrahedral elements of this degree had not been found until now. We prove that our accuracy condition results in a mass-lumped finite element method that converges with optimal order in the $L^2$-norm and energy-norm. A dispersion analysis and several numerical tests confirm that our elements maintain the optimal order of accuracy and show that the new mass-lumped tetrahedral elements are more efficient than the current ones.
We introduce a new numerical method for solving time-harmonic acoustic scattering problems. The main focus is on plane waves scattered by smoothly varying material inhomogeneities. The proposed method works for any frequency ω, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: i) computation of a suitable incoming plane wavelet with compact support in the propagation direction; ii) solving a scattering problem in the time domain for the incoming plane wavelet; iii) reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in ii). By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency ω. We also present a new algorithm for computing the Fourier transform in iii) that exploits the reduced number of degrees of freedom corresponding to the adapted meshes. Numerical examples demonstrate the advantages of the proposed method and the fact that the method can also be applied with external source terms such as point sources and sound-soft scatterers. The gained efficiency, however, is limited in the presence of trapping modes.
In this dissertation, new and more efficient finite element methods for modelling seismic wave propagation are presented and analysed. Seismic modelling is a useful tool for better understanding seismic behaviour in complex rock structures, but it is also a key aspect of full waveform inversion, which is a powerful technique for imaging the structure of the earth's subsurface. The great advantage of finite element methods over other wave modelling methods, like the popular finite difference method, is that it accurately captures the effect of complex topographies, such as mountainous areas and rough seabeds, without refining the grid resolution. Even so, these methods require a huge amount of computational power and making them more efficient is of great value in many industrial applications.Topics addressed in this dissertation include: new and sharper bounds for the penalty term and time step size of the Discontinuous Galerkin method, new and significantly more efficient mass-lumped tetrahedral elements, new and efficient quadrature rules for evaluating the stiffness matrix of these mass-lumped elements, stability properties of a basic local time-stepping algorithm, and a dispersion analysis and comparison of multiple finite element methods.Overall, the finite element methods and algorithms presented in this dissertation allow for a much faster modelling of seismic waves. This is especially true for the new mass-lumped finite elements, which in some cases result in a speed of a factor 10 compared to other finite element methods. These improvements make the use of finite element methods much more attractive for geophysical applications or other industrial applications that involve solving wave propagation problems.
We present a new accuracy condition for constructing mass-lumped elements. This condition is less restrictive than the one previously used and enabled us to construct new mass-lumped tetrahedral elements for 3D wave propagation modelling. The new degree-2 and degree-3 elements require significantly fewer nodes than previous versions and mass-lumped tetrahedral elements of higher degree had not been found before. We also present a new accuracy condition for evaluating the stiffness matrix-vector product. This enabled us to obtain tailored quadrature rules for the new elements that further reduce the computational cost.