Abstract This study deals with the effect of plasminogen/plasmin on the in vitro maturation (IVM) of bovine cumulus‐oocyte complexes (COCs). Exogenous plasminogen activator streptokinase (SK) added to the IVM medium revealed similar values of cumulus expansion and oocyte nuclear maturation compared to controls (standard IVM medium). However, a decrease in both determinations was observed in COCs matured with the supplementation of ɛ‐aminocaproic acid (ɛ‐ACA), a specific plasmin inhibitor. After in vitro fertilization, no differences were observed in either cleavage or blastocyst rates between SK and control groups; however, ε‐ACA treatment caused a decrease in both developmental rates. Zona pellucida (ZP) digestion time decreased in the SK group while it increased in the ε‐ACA group. Raman microspectroscopy revealed an increase in the intensity of the band corresponding to the glycerol group of sialic acid in the ZP of oocytes matured with SK, whereas ZP spectra of oocytes treated with ɛ‐ACA presented similarities with immature oocytes. The results indicate that although treatment with SK did not alter oocyte developmental competence, it induced modifications in the ZP of oocytes that could modify the folding of glycoproteins. Plasmin inhibition impairs oocyte maturation and has an impact on embryo development, thus evidencing the importance of this protease during IVM.
Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable
Abstract In the present work, we established and characterized a 3D functional polarized primary bovine oviduct epithelial cells (BOECs) culture on free‐floating type I collagen hydrogels (rafts) at an air‐liquid interface (ALI). Intercellular junctions, ultrastructural cellular morphology and the expression of the OVGP1 closely recapitulated those of the in vivo epithelium lining. These morphological and physiological epithelial cell features were maintained under standard DMEM/F12 with 10% foetal bovine serum culture medium for at least 28 days of ALI culture. The versatility of the BOECs raft cultures should allow testing of toxicity compounds, in vitro evaluation of physiological or pathological oviductal states, and the study of epithelial‐mesenchymal interactions that are critical for the maintenance of oviductal homeostasis.
Summary The mammalian oviduct plays a pivotal role in the success of early reproductive events. The urokinase plasminogen activator system (uPAS) is present in the bovine oviduct and is involved in extracellular matrix remodelling through plasmin generation. This system can be regulated by several members of the vascular endothelial growth factors (VEGF) and their receptors. In this study, the VEGF-D effect on the regulation of uPAS was evaluated. First, RT-polymerase chain reaction (PCR) analyses were used to evidence the expression of VEGF-D and its receptors in oviductal epithelial cells (BOEC). VEGF-D , VEGFR2 and VEGFR3 transcripts were found in ex vivo and in vitro BOEC, while only VEGFR2 mRNA was present after in vitro conditions. VEGF-D showed a regulatory effect on uPAS gene expression in a dose-dependent manner, inducing an increase in the expression of both uPA and its receptor (uPAR) at 24 h post-induction and decreases in the expression of its inhibitor (PAI-1). In addition, the regulation of cell migration induced by VEGF-D and uPA in BOEC monolayer cultures was analyzed. The wound areas of monolayer cultures incubated with VEGF-D 10 ng/ml or uPA 10 nM were modified and significant differences were found at 24 h for both stimulations. These results indicated that uPAS and VEGF-D systems can modify the arrangement of the bovine oviductal epithelium and contribute to the correct maintenance of the oviductal microenvironment.
This study evaluated the effect of soybean expeller (SBE) dietary supplementation on plasma antioxidant status in beef heifers during a four-month natural breeding season. Thirty-two heifers were assigned into two groups over two consecutive years. One group grazed on Rhodes grass without SBE supplementation during the breeding season (LSBE; n = 16), while the other received SBE supplementation at 0.6% of body weight (BW) during the breeding season (HSBE; n = 16). Plasma was analyzed for total phenolic compounds, flavonoids, antiradical activity, and overall antioxidant capacity. Oxidative stress was measured using the thiobarbituric acid reactive substances (TBARS) assay to assess malondialdehyde (MDA) levels. Heifers receiving SBE had significantly higher antioxidant levels and lower oxidative stress, as indicated by reduced MDA levels, compared to the LSBE group. However, no significant differences were found on pregnancy rates, calving attributes, or postparturition recovery between the groups. These findings suggest that SBE supplementation enhances plasma antioxidant capacity and reduces oxidative damage in beef heifers without affecting reproductive outcomes.