ABSTRACT B cell activation is accompanied by dynamic metabolic reprogramming, supported by a multitude of nutrients that include glucose, amino acids and fatty acids. While several studies have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions, contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical enzyme for long-chain fatty acid oxidation in mitochondria. Here, we test the requirement of CPT2 for humoral immunity using a mouse model with a lymphocyte specific deletion of CPT2. Stable 13 C isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2 deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell activation, germinal center formation, and antibody production upon either thymus-dependent or –independent antigen challenges. Together, our findings indicate that CPT2 mediated fatty acid oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of lymphocytes.
The mechanistic target of rapamycin (mTOR) signaling integrates diverse environmental cues, including growth factors, nutrients and immunological signals. Activation of mTOR signaling stimulates protein synthesis and anabolic metabolism and coordinates cell growth, proliferation and fate decisions. In recent years, mTOR signaling has been linked to the entire spectrum of T cell biology, ranging from T cell development and activation to lineage specification and memory formation. Mechanistically, mTOR activation profoundly affects the expression and activity of many immunologically relevant transcription factors to propagate immune signaling and mediate effector functions. These transcription factors orchestrate cell metabolism (MYC, SREBPs and HIF1), lineage differentiation (T-bet, GATA3, RORγt, FOXP3 and Eomesodermin) and immune activation and functions (NF-κB, FOXOs, IRF4, STATs and GFI-1). This review discusses how mTOR signaling, through impinging upon transcriptional factors, regulates T cell development, activation, and effector and memory differentiation.
Immune cells can metabolize glucose, amino acids, and fatty acids (FAs) to generate energy. The roles of different FA species and their impacts on humoral immunity remain poorly understood. Here, we report that proliferating B cells require monounsaturated FAs (MUFAs) to maintain mitochondrial metabolism and mTOR activity and to prevent excessive autophagy and endoplasmic reticulum (ER) stress. Furthermore, B cell-extrinsic stearoyl-CoA desaturase (SCD) activity generates MUFA to support early B cell development and germinal center (GC) formation in vivo during immunization and influenza infection. Thus, SCD-mediated MUFA production is critical for humoral immunity.
Abstract Seven different anti-PD-1 and PD-L1 monoclonal antibodies are now widely used in the US to treat a variety of cancer types, but there have been no clinical trials comparing them directly. Furthermore, because many of these antibodies do not cross react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by FDA-approved antibodies. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor antigen (OVA), followed by subsequent B16-OVA tumor challenge. We found that anti-PD-1/L1-treated mice exhibited significantly better tumor rejection than controls, although both the control and antibody-treated mice generated comparable numbers of OVA-specific T cells at the time of priming. To determine what could mediate this strong antitumor immune response, we identified the increased production of CX3CR1 + PD-1 + CD8 + cytotoxic T cells in the anti-PD-1/L1-treated mice, the same subset of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of FDA-approved anti-PD-1/L1 monoclonal antibodies and further correlates successful tumor rejection with the level of CX3CR1 + PD-1 + CD8 + T cells, making this model a critical tool for future studies to optimize and better utilize anti-PD-1/L1 therapeutics.
ABSTRACT The development of many systemic autoimmune diseases, including systemic lupus erythematosus, is associated with overactivation of the type I interferon (IFN) pathway, lymphopenia, and increased follicular helper T (Tfh) cell differentiation. However, the cellular and molecular mechanisms underlying these immunological perturbations remain incompletely understood. Here we show that the mechanistic target of rapamycin complex 2 (mTORC2) promotes Tfh differentiation and disrupts Treg homeostasis. Inactivation of mTORC2 in total T cells, but not in Tregs, greatly ameliorated the immunopathology in a systemic autoimmunity mouse model. This was associated with reduced Tfh differentiation, B cell activation, and reduced T cell glucose metabolism. Finally, we show that type I IFN can synergize with TCR ligation to activate mTORC2 in T cells, which partially contributes to T cell lymphopenia. These data indicate that mTORC2 may act as downstream of type I IFN, TCR, and costimulatory receptor ICOS, to promote glucose metabolism, Tfh differentiation, and T cell lymphopenia, but not to suppress Treg function in systemic autoimmunity. Our results suggest that mTORC2 might be a rational target for systemic autoimmunity treatment.