Background . Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. Methods . In vivo aorta abdominalis of GK rats was observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were cultured with 30 mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K, Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt phosphorylation levels were detected by Western blot analysis. Results . Heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than the control group. Conclusions . Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.
Chronic glomerulonephritis (CGN) is the most common form of glomerular disease; however, its associated molecular mechanisms remain unclear. Spleen tyrosine kinase (Syk) is a key mediator of B‑receptor signaling on the surface of inflammatory cells. The primary target for R406 is Syk. The aim of the present study was to investigate the molecular mechanisms involved in a rat model of CGN induced by adriamycin (ADR) and in the rat glomerular mesangial cell line, HBZY‑1, stimulated by lipopolysaccharide (LPS). CGN was induced in the rat models by two intravenous injections of ADR into the tail: 3.5 mg/kg ADR was given on the first day and 3.0 mg/kg on the fourteenth day. HBZY‑1 cells were incubated with 0.5 µg/ml LPS for 48 h. The pathological alterations in the kidney tissues were observed by hematoxylin and eosin staining. The 24 h urinary protein, blood urea nitrogen (BUN) and creatinine levels were measured using an automatic biochemistry analyzer. The mRNA expression levels of Syk, Ras, mitogen activated protein kinase kinase (MEK), extracellular signal regulated kinase (ERK)1/2 and c‑Fos was measured by reverse transcription‑quantitative polymerase chain reaction. Subsequently, the protein levels of phosphorylated (p)‑Syk, Ras, p‑MEK1/2, p‑ERK1/2 and c‑Fos were measured by western blot analysis. In the model group, 24 h urinary protein, BUN and creatinine levels were increased when compared with the normal group (P<0.05). In addition, compared with the normal group, the mRNA and protein levels of the Syk/Ras/c‑Fos pathway components in vitro and in vivo were markedly increased, inhibiting the abnormal cell viability of mesangial cells. In conclusion, the results of the present study suggested a potential role for the Syk/Ras/c‑Fos signaling pathway in CGN, which indicated the necessity for further investigation at the clinical level.
Hepatic fibrosis (HF), one of the leading global health problems, is defined as aberrant and excess production of extracellular matrix components. The pathogenesis of HF is complex and poorly understood. Long non‑coding RNAs (LncRNAs) can interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate the expression of target genes, which play a significant role in the initiation and progression of HF. In the present study, the LncRNA‑associated ceRNA network was reconstructed based on LncRNA, miRNA and mRNA expression profiles that were downloaded from National Center for Biotechnology Information Gene Expression Omnibus. Bioinformatics assessments including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed with Database for Annotation, Visualization and Integration Discovery. The ceRNA network was composed of 220 LncRNA nodes, 24 miRNA nodes, 164 mRNA nodes and 1,149 edges. Functional assays identified that a total of 338 GO terms and 25 pathways, including regulation of cytokine and collagen, and the transforming growth factor‑β and Toll‑like receptor signaling pathways, were significantly enriched. In addition, 4 LncRNAs (NONMMUT036242, XR_877072, XR_378619 and XR_378418) were highly related to HF and thereby chosen as key LncRNAs. The present study uncovered a ceRNA network that could further the understanding of the mechanisms underlying HF development and provide potential novel markers for clinical diagnosis and targets for treatment.
The Stephania tetrandra−Astragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine.
Abstract Diabetic nephropathy (DN) is a common microvascular complication of diabetic patients, along with hypertension, hyperlipemia, proteinuria, edema, and other clinical manifestations. Astragalus membranaceus (AM) is a traditional Chinese medicine and has shown significant clinical efficacy against DN. However, the overall molecular mechanism of this therapeutic effect has not been entirely elucidated. Using network pharmacology, we aimed to identify the key active ingredients and potential pharmacological mechanisms of AM in treating DN and provide scientific evidence of its clinical efficacy. The active ingredients of AM were obtained from the traditional Chinese medicine systems pharmacology database, and the potential targets of AM were identified using the therapeutic target database. DN-related target genes were acquired from the Gene Expression Omnibus microarray dataset GSE1009 and 3 widely used databases-DisGeNET, GeneCards, and Comparative Toxicogenomics Database. The DN–AM common target protein interaction network was established by using the STRING database. Active ingredients candidate targets proteins networks were constructed using Cytoscape software for visualization. Additionally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery database. Target-regulating microRNAs (miRNAs) of these hub genes were obtained from the therapeutic target database, which could then be used for further identification of AM-regulated key miRNAs. A total of 17 active ingredients and 214 target proteins were screened from AM. 61 candidate co-expressed genes with therapeutic effects against DN were obtained and considered as potential therapeutic targets. GO and Kyoto encyclopedia of genes and genomes enrichment analysis showed that these genes were mainly involved in inflammatory response, angiogenesis, oxidative stress reaction, HIF signaling pathway, tumor necrosis factor signaling pathway, and VEGF signaling pathway. In all, 636 differentially expressed genes were identified between the DN patients and control group by using microarray data, GSE1009. Lastly, VEGFA, epidermal growth factor receptor, STAT1, and GJA1 were screened as hub genes. The relationships between miRNAs and hub genes were constructed, which showed that miR-302-3p, miR-372-3p, miR-373-3p, and miR-520-3p were regulated by VEGFA and epidermal growth factor receptor. Meanwhile, VEGFA also influenced miR-15-5p, miR-16-5p, miR-17-5p, miR-20-5p, miR-93-5p, miR-106-5p, miR-195-5p, miR-424-5p, miR-497-5p, and miR-519-3p. In addition, miR-1-3p and miR-206 were regulated by VEGFA and GJA1, and miR-23-3p was regulated by STAT1 and GJA1. To our knowledge, this study revealed for the first time the characteristic multiple components, multiple targets, and multiple pathways of AM that seem to be the underlying mechanisms of action of AM in the treatment of DN with respect to miRNAs. Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences.