Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum). Bread wheat has ample genetic variation for resistance breeding, which can be readily exploited, while durum wheat is characterized by higher disease susceptibility and fewer valuable resistance sources. The Wheat Initiative - Expert Working Group on Durum Wheat Genomics and Breeding has promoted a scientific discussion to define the key actions that should be prioritized for achieving resistance in durum wheat comparable to that found in bread wheat. Here, a detailed state of the art and novel tools to improve FHB resistance in durum are presented, together with a perspective on the next steps forward. A meta-analysis grouping all quantitative trait loci (QTL) associated with FHB resistance in both bread and durum wheat has been conducted to identify hotspot regions that do not overlap with Rht alleles, which are known to negatively correlate with FHB resistance. A detailed list of QTL related to FHB resistance and deoxynivalenol contamination and durum lines carrying different sources of FHB resistance are provided as a strategic resource. QTL, closely linked markers and durum wheat lines carrying the useful alleles, can be selected to design an effective breeding program. Finally, we highlight the priority actions that should be implemented to achieve satisfactory resistance to FHB in durum wheat.
Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA) and abscisic acid (ABA), are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens –mediated control of Fusarium head blight (FHB) disease of barley and to determine if biocontrol-associated hormones directly affect disease development. A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced both symptoms and yield loss asssociated with the disease. This is the first evidence that IAA plays a role in the control of FHB disease and in the bacterial priming of host defences.
Ensifer adhaerens OV14 underpins the successful crop transformation protocol termed Ensifer-mediated transformation but issues exist in regard to addressing the pleomorphic tendency of the bacterium in suboptimal conditions, identifying the optimal parameters for electrotransformation and defining the strain's antibiotic profile. Here, modifications made to growth medium composition addressed the pleomorphic trait of E. adhaerens OV14, delivering uniform E. adhaerens OV14 growth to ensure efficient rates of electroporation with plasmids up to 42.2 kb in size. Separately, 63 putative antibiotic resistance coding sequences were identified across the E. adhaerens OV14 genome, with testing confirming the strain's susceptibility to gentamicin (≥10 mg L(-1)), tetracycline (≥10 mg L(-1)), chloramphenicol (≥100 mg L(-1)) and cefotaxime (≥500 mg L(-1)) and resistance to ampicillin, paramomycin, streptomycin, spectinomycin, ticarcillin-clavulanate and kanamycin. Partial resistance against carbenicillin, rifampicin, hygromycin-B and neomycin was also recorded. Resistance to kanamycin was supported by seven independent nptII-like homologs located within the E. adhaerens OV14 genome. Transcriptional analysis of these targets highlighted two homologs (AHK42288 and AHK42618) whose transcription was significantly elevated within 2 h exposure to kanamycin and which in the case of AHK42288 was maintained out to 6 h post-exposure. In conclusion, our results have identified optimal conditions for the handling of E. adhaerens and have identified a future genome editing target (AHK42288) to negate the kanamycin-resistant phenotype of E. adhaerens.
Zymoseptoria tritici , the causal agent of septoria tritici blotch ( STB ), remains a significant threat to European wheat production with the continuous emergence of fungicide resistance in Z. tritici strains eroding the economic sustainability of wheat production systems. The life cycle of Z. tritici is characterized by a presymptomatic phase (latent period, LP ) after which the pathogen switches to an aggressive necrotrophic stage, when lesions bearing pycnidia quickly manifest on the leaf. As minimal knowledge of the possible role of the LP in supporting STB resistance/susceptibility exists, the goal of this study was to investigate the spatial and temporal association between the LP and disease progression across three locations (Ireland – Waterford, Carlow; UK – Norwich) that represent commercially high, medium and low STB pressure environments. Completed over two seasons (2013–2015) with commercially grown cultivars, the potential of the LP in stalling STB epidemics was significant as identified with cv. Stigg, whose high level of partial resistance was characterized by a lengthened LP ( c . 36 days) under the high disease pressure environment of Waterford. However, once the LP concluded it was followed by a rate of disease progression in cv. Stigg that was comparable to that observed in the more susceptible commercial varieties. Complementary analysis, via logistic modelling of intensive disease assessments made at Carlow and Waterford in 2015, further highlighted the value of a lengthened LP in supporting strong partial resistance against STB disease of wheat.
Purpose The fungus Piriformospora indica was first isolated from plants growing in arid, hot desert conditions and has been shown to have significant potential as a biocontrol and biofertilising organism in barley under optimal growth conditions. However, it was not thought to be effective in plants grown in low temperatures and has consequently not been well tested in cold-stressed crops. This study sought to determine the effects of inoculating barley plants with this fungus in cool growth conditions with variable nutrient input. Methods Three barley varieties were inoculated with P. indica and two other fungal root endophytes, Chaetomium globosum and Epicoccum nigrum, in a controlled environment under low temperature stress with variable nutrient input, and measured growth, development and yield.