Problems of stratigraphic completeness and poor temporal resolution make analysis of faunal change in terrestrial sequences difficult. The fluvial Neogene Siwalik formations of India and Pakistan are an exception. They contain a long vertebrate record and have good chronostratigraphic control, making it possible to assess the influence of biotic interchange on Siwalik fossil communities. In Pakistan, the interval between 18 and 7 Ma has been most intensively studied and changes in diversity and relative abundance of ruminant artiodactyls and muroid rodents are documented with temporal resolution of 200,000 years. Within this interval, diversity varies considerably, including an abrupt rise in species number between 15 and 13 Ma, followed by a decline in ruminant diversity after 12 Ma and a decline in muroid diversity in two steps at 13 and 10 Ma. Significant changes in relative abundance of taxa include an increase in bovids between 16.5 and 15 Ma, a decrease in tragulids after 9 Ma, and a very abrupt increase in murids at 12 Ma. Megacricetodontine rodents also decrease significantly at 12 Ma, and smaller declines are recorded among myocricetodontine and copemyine rodents after 16 Ma. An increase of dendromurine rodents at 15.5 Ma is also observed. There is also a trend of progressive size increase among giraffoids and bovids throughout the sequence. We have also investigated relationships between biotic interchange and diversity, body size, and relative abundance, concluding that (1) the rapid increase in ruminant and muroid diversity was largely due to immigration, whereas in situ speciation had only a secondary role; (2) during intervals of increasing diversity, resident lineages did not have higher than average rates of in situ speciation; (3) during intervals with rising diversity, greater extinction did not accompany increased immigration; (4) during intervals with falling diversity, there may have been greater extinction in recently invading lineages; and (5) change in diversity was independent of changes in relative abundance and body size.
Cooking is a human universal that must have had widespread effects on the nutrition, ecology, and social relationships of the species that invented it. The location and timing of its origins are unknown, but it should have left strong signals in the fossil record. We suggest that such signals are detectable at ca. 1.9 million years ago in the reduced digestive effort (e.g., smaller teeth) and increased supply of food energy (e.g., larger female body mass) of early Homo erectus. The adoption of cooking required delay of the consumption of food while it was accumulated and/or brought to a processing area, and accumulations of food were valuable and stealable. Dominant (e.g., larger) individuals (typically male) were therefore able to scrounge from subordinate (e.g., smaller) individuals (typically female) instead of relying on their own foraging efforts. Because female fitness is limited by access to resources (particularly energetic resources), this dynamic would have favored females able to minimize losses to theft. To do so, we suggest, females formed protective relationships with male co‐defenders. Males would have varied in their ability or willingness to engage effectively in this relationship, so females would have competed for the best food guards, partly by extending their period of sexual attractiveness. This would have increased the numbers of matings per pregnancy, reducing the intensity of male intrasexual competition. Consequently, there was reduced selection for males to be relatively large. This scenario is supported by the fossil record, which indicates that the relative body size of males fell only once in hominid evolution, around the time when H. erectus evolved. Therefore we suggest that cooking was responsible for the evolution of the unusual human social system in which pair bonds are embedded within multifemale, multimale communities and supported by strong mutual and frequently conflicting sexual interest.
Olduvai Gorge 1951–1961. Vol. I. Preliminary Report on the Geology and Fauna. ByL. S. B. Leakey. With contributions byP. M. Butler, M. Greenwood, G. Gaylord Simpson, R. Lavocat, R. F. Ewer, G. Petter, R. L. Hay, and M. D. Leakey. Pp.118, pls. 97. Cambridge University Press, 1965. Price 75s. - Olduvai Gorge. Vol. 2. The Cranium and Maxillary Dentition of Australopithecus (Zinjanthropus) Boisei. By P. V. Tobias. Pp. 264, pls. 42. Cambridge University Press, 1967. Price 90s. - Volume 33