Antibiotics are an essential component of the modern lifestyle. They improve our lives by treating disease, preventing disease, and in the case of agricultural animals by improving feed efficiency. However, antibiotic usage is not without collateral effects. The development and spread of antibiotic resistance is the most notorious concern associated with antibiotic use. New technologies have enabled the study of how the microbiota responds to the antibiotic disturbance, including how the community recovers after the antibiotic is removed. One common theme in studies of antibiotic effects is a rapid increase in Escherichia coli followed by a gradual decline. Increases in E. coli are also associated with systemic host stresses, and may be an indicator of ecosystem disturbances of the intestinal microbiota. Moreover, recent studies have shown additional effects mediated by antibiotics on the gut microbiota, such as the stimulation of gene transfer among gut bacteria and the reduction of immune responses in peripheral organs. Querying the microbiota after antibiotic treatment has led to intriguing hypotheses regarding predicting or mitigating unfavorable treatment outcomes. Here we explore the varied effects of antibiotics on human and animal microbiotas.
Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%–85% of the erm gene diversity in the manures analyzed.
Vaccination-induced Escherichia coli O157:H7-specific immune responses have been shown to reduce E. coli O157:H7 shedding in cattle. Although E. coli O157:H7 colonization is correlated with perturbations in intestinal microbial diversity, it is not yet known whether vaccination against E. coli O157:H7 could cause shifts in bovine intestinal microbiota. To understand the impact of E. coli O157:H7 vaccination and colonization on intestinal microbial diversity, cattle were vaccinated with two doses of different E. coli O157:H7 vaccine formulations. Six weeks post-vaccination, the two vaccinated groups (Vx-Ch) and one non-vaccinated group (NonVx-Ch) were orally challenged with E. coli O157:H7. Another group was neither vaccinated nor challenged (NonVx-NonCh). Fecal microbiota analysis over a 30-day period indicated a significant (FDR corrected, p <0.05) association of bacterial community structure with vaccination until E. coli O157:H7 challenge. Shannon diversity index and species richness were significantly lower in vaccinated compared to non-vaccinated groups after E. coli O157:H7 challenge (p < 0.05). The Firmicutes:Bacteroidetes ratio (p > 0.05) was not associated with vaccination but the relative abundance of Proteobacteria was significantly lower (p < 0.05) in vaccinated calves after E. coli O157:H7 challenge. Similarly, Vx-Ch calves had higher relative abundance of Paeniclostridium spp. and Christenellaceae R7 group while Campylobacter spp., and Sutterella spp. were more abundant in NonVx-Ch group post-E. coli O157:H7 challenge. Only Vx-Ch calves had significantly higher (p < 0.001) E. coli O157:H7-specific serum IgG but no detectable E. coli O157:H7-specific IgA. However, E. coli O157:H7-specific IL-10-producing T cells were detected in vaccinated animals prior to challenge, but IFN-γ-producing T cells were not detected. Neither E. coli O157:H7-specific IgG nor IgA were detected in blood or feces, respectively, of NonVx-Ch and NonVx-NonCh groups prior to or post vaccinations. Both Vx-Ch and NonVx-Ch animals shed detectable levels of challenge strain during the course of the study. Despite the lack of protection with the vaccine formulations there were detectable shifts in the microbiota of vaccinated animals before and after challenge with E. coli O157:H7.