Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single-chain anti-EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that specifically bind to and are internalized by EGFR-expressing cancer cells, thereby producing a fluorescent signal or magnetic resonance imaging (MRI) contrast. In vivo tumor targeting and uptake of the nanoparticles in human cancer cells is demonstrated after systemic delivery of ScFvEGFR-QDs or ScFvEGFR-IO nanoparticles into an orthotopic pancreatic cancer model. Therefore, ScFvEGFR nanoparticles have potential to be used as a molecular-targeted in vivo tumor imaging agent. Efficient internalization of ScFvEGFR nanoparticles into tumor cells after systemic delivery suggests that the EGFR-targeted nanoparticles can also be used for the targeted delivery of therapeutic agents.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The endogenous amino acid, 5-aminolevulinic acid (5-ALA), has received significant attention as an imaging agent, including ongoing clinical trials for image-guided tumor resection due to its selective uptake and subsequent accumulation of the fluorescent protoporphyrin IX in tumor cells. Based on the widely reported selectivity of 5-ALA, a new positron emission tomography imaging probe was developed by reacting methyl 5-bromolevulinate with [13N] ammonia. The radiotracer, [13N] 5-ALA, was produced in high radiochemical yield (65%) in 10 min and could be purified using only solid phase cartridges. In vivo testing in rats bearing intracranial 9L glioblastoma showed peak tumor uptake occurred within 10 min of radiotracer administration. Immunohistochemical staining and fluorescent imaging was used to confirm the tumor location and accumulation of the tracer seen from the PET images. The quick synthesis and rapid tumor specific uptake of [13N] 5-ALA makes it a potential novel clinical applicable radiotracer for detecting and monitoring tumors noninvasively.
Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.
With the development of society, the demand for mineral resources is gradually increasing, and the current situation of decreasing total resources dictates the inevitable interaction between open-pit combing underground extraction (OPUG) in time and space. In this research, we took the Anjialing coal mine in Shanxi Province of China as a case study, and tested the physical and mechanical properties of coal rocks in the laboratory. The similarity criterion was used to build a similar experimental model for the deformation evolution of the slope of the open-pit mine section; the digital scattering method was used to test the influence of the underground mining process parameters on the deformation evolution of the open-pit slope. The results showed that there was an obvious distribution of “three zones” above the mining goaf, namely, a collapse zone, fracture zone, and slow subsidence zone. When the mining face was continuously advanced towards the bottom of the open pit, the supporting stress of the mining face transferred to the side of the open-pit slope. Additionally, large displacement and stress concentration were observed on the slope near the stoping line, which caused the slope body to move along the uppermost part of the slope first, and thereafter along the lower part. Various techniques for slope stability control are discussed, including the optimization of spatial and temporal relationships between open-pit and underground mining, the optimization of mining plans, and the use of monitoring and early warning systems. The results can provide a guide for slope stability control of similar open-pit mines in the process of mining coal resources.
The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery.
Supplementary Figures 1-3 from EGFRvIII Antibody–Conjugated Iron Oxide Nanoparticles for Magnetic Resonance Imaging–Guided Convection-Enhanced Delivery and Targeted Therapy of Glioblastoma