Abstract Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium and achieved the highest production rate and yield of hydrogen. Highest H 2 yield of 2.02 mol H 2 /mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K 2 HPO 4 , 3 KH 2 PO 4 , 0.05 L-cysteine, 0.05 MgSO 4 ·7H 2 O, 0.1 MnSO 4 ·H 2 O and 0.3 FeSO 4 ·7H 2 O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H 2 yield (mol H 2 /mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H 2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.
AbstractFour formulations were processed into frankfurters with different ratios of mechanically deboned chicken meat (MDCM) and cooked chicken skin (CCS) i.e. 80/0, 70/10, 60/20 and 50/30. The products were evaluated for proximate composition, cholesterol content, colour; 'L' value (lightness) and 'a' value (redness), percentage of cooking loss, physical measurements (shearforce-kgf and folding test), thiobarbituric acid value (TBA) and taste panel evaluation. The increment of CCS in the frankfurters increased the contents of moisture, ash, protein, fat, cholesterol, the lightness ('L' value) and redness ('a' value). After 3 months of frozen storage, the increment continued except for the moisture contents for formulations with 20 and 30% CCS. The lipid oxidation (TBA value) and cooking loss were lowered in formulations with CCS. After 3 months of frozen storage, TBA value decreased, while the cooking loss increased for all the formulations. The addition of CCS increased hardness of the frankfurters but affected folding ability, with formulation with 10% CCS scoring better grade. Sensory evaluation was carried out using 30 untrained panelists to evaluate aroma, colour, appearance, hardness, juiciness, chicken taste, oily taste, rancid taste and overall acceptance of the products. The addition of CCS in the frankfurters at 10 and 20% resulted in products with taste and texture that were acceptable after 3 months of frozen storage.