Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database ( https://bioinformatics.mpi-bn.mpg.de/SGD_Stroke ). Dissection of the NVU transcriptome revealed Spp1, encoding for osteopontin, to be highly upregulated in all NVU cells 24 h after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post-ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro. The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.
For CNS lymphomas (CNSL), there is a high need for minimally invasive and easily obtainable diagnostic markers. Intrathecal IgM synthesis can easily be determined in routine CSF diagnostics. The aim of this study was to systematically investigate the diagnostic potential of intrathecal IgM synthesis in primary and secondary CNSL (PCNSL and SCNSL). In this retrospective study, patients with a biopsy-proven diagnosis of PCNSL or SCNSL were compared with patients with other neurological diseases in whom CNSL was initially the primary radiological differential diagnosis based on MRI. Sensitivity and specificity of intrathecal IgM synthesis were calculated using receiver operating characteristic curves. Seventy patients with CNSL were included (49 PCNSL and 21 SCNSL) and compared to 70 control patients. The sensitivity and specificity for the diagnosis of CNSL were 49% and 87%, respectively, for the entire patient population and 66% and 91% after selection for cases with tumor access to the CSF system and isolated intrathecal IgM synthesis. In cases with MRI-based radiological suspicion of CNSL, intrathecal IgM synthesis has good specificity but limited sensitivity. Because of its low-threshold availability, analysis of intrathecal IgM synthesis has the potential to lead to higher diagnostic accuracy, especially in resource-limited settings, and deserves further study.
Abstract Superficial siderosis is a consequence of repetitive bleeding into the subarachnoid space, leading to toxic iron and hemosiderin deposits on the surface of the brain and spine. The clinical and radiological phenotypes of superficial siderosis are known to manifest over long time intervals. In contrast, this study defines the “acute superficial siderosis syndrome” and illustrates typical imaging and histopathological findings of this entity. We describe the case of a 61-year-old male patient who was diagnosed with a melanoma metastasis in the right frontal cortex in February 2019. Within a few weeks he developed a progressive syndrome characterized by cerebellar ataxia, gait disturbance, signs of myelopathy, and radiculopathy. MRI revealed ongoing hemorrhage from the metastasis into the lateral ventricle and the subarachnoid space. A semiquantitative assessment of three subsequent MRI within an 8-week period documented the rapid development of superficial siderosis along the surface of the cerebellum, the brain stem, and the lower parts of the supratentorial regions on T2*-weighted sequences. The diagnosis of a superficial siderosis was histopathologically confirmed by identifying iron and hemosiderin deposits on the cortex along with astrogliosis. The recognition of this “acute superficial siderosis syndrome” triggered surgical removal of the hemorrhagic metastasis. Based on a single case presentation, we define the “acute superficial siderosis syndrome” as a clinical entity and describe the radiological and histopathological characteristics of this entity. Early recognition of this syndrome may allow timely elimination of the bleeding source, in order to prevent further clinical deterioration.
Abstract Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database (bioinformatics.mpi-bn.mpg.de/SGD_Stroke). Dissection of the NVU transcriptome revealed Spp1 , encoding for osteopontin, to be highly upregulated in all NVU cells 24 hours after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro . The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.
Abstract Ischemic stroke is a serious neurological disorder that is associated with dysregulation of the neurovascular unit (NVU) and impairment of the blood–brain barrier (BBB). Paradoxically, reperfusion therapies can aggravate NVU and BBB dysfunction, leading to deleterious consequences in addition to the obvious benefits. Using the recently established EPAM-ia method, we identified osteopontin as a target dysregulated in multiple NVU cell types and demonstrated that osteopontin targeting in the early acute phase post-transient middle cerebral artery occlusion (tMCAO) evolves protective effects. Here, we assessed the time course of osteopontin and CD44 receptor expression in NVU cells and examined cerebroprotective effects of osteopontin targeting in early and late acute phases of ischemic stroke. Expression analysis of osteopontin and CD44 receptor post-tMCAO indicated increased levels of both, from early to late acute phases, which was supported by their co-localization in NVU cells. Combined osteopontin targeting in early and late acute phases with anti-osteopontin antibody resulted in further improvement in BBB recovery and edema reduction compared to targeting only in the early acute phase comprising the reperfusion window. Combined targeting led to reduced infarct volumes, which was not observed for the single early acute phase targeting. The effects of the therapeutic antibody were confirmed both in vitro and in vivo in reducing osteopontin and CD44 expression. Osteopontin targeting at the NVU in early and late acute phases of ischemic stroke improves edema and infarct size in mice, suggesting anti-osteopontin therapy as promising adjunctive treatment to reperfusion therapy.